5 research outputs found

    Nanostructured Materials for the Development of Superhydrophobic Coatings

    Get PDF
    This chapter describes the results of developing superhydrophobic coatings using porous ZnO nanostructures impregnated metal stearates and their applications. The porous ZnO nanostructures with a surface area of 9.7 m2/g and pores in the range from 200 to 400 nm have been prepared via precipitation cum calcination route. The superhydrophobic coatings comprising ZnO/metal stearate film have been deposited using a spray coating method. The developed superhydrophobic films possess a water contact angle of 161° that can be explained using the Cassie-Baxter model. The prepared films exhibited excellent floating properties and high load-bearing characteristics over a prolonged time. Additionally, the self-cleaning properties of the developed superhydrophobic films towards dust removal and self-cleaning urinary coatings are also demonstrated. This chapter collectively presented the novel applications of superhydrophobic coating in the development of biomedical coatings and applications in water surveillance and underwater robotics

    Novel water soluble dendrimer nanocarrier for enhanced photodynamic efficacy of protoporphyrin Ⅸ

    No full text
    The present study describes the development and evaluation of a novel biocompatible dendrimer-based nano drug delivery system which is readily soluble in water prepared by condensing Phloroglucinol and Succinic Acid (PGSA) and could efficiently encapsulate a well known hydrophobic photodynamic therapy (PDT) agent, protoporphyrin Ⅸ (PpⅨ). The (dark and photo) cytotoxicity of the PGSA-PpⅨ (dendrimer-drug) formulation towards Dalton Lymphoma Ascites (DLA) cancer cell lines upon visible light treatment is reported and evaluated the cytotoxic Reactive Oxygen Species (ROS) generation efficiency of the Protoporphyrin Ⅸ in free and dendrimer encapsulated forms. The in vitro toxicity demonstrated by PpⅨ loaded PGSA dendrimer nanoformulation, on DLA cells reveals that this novel PGSA nanocarrier reduces the toxic nature of PpⅨ when compared to free PpⅨ without light treatment which satisfy the aim of our study. On the other hand, treatment of DLA cells with PGSA dendrimer formulation in combination with light resulted in significant enhancement in therapeutic efficacy of the PDT agent, PpⅨ

    Graphene oxide nanopaint

    No full text
    Nanostructured materials are receiving growing interest in the development of a number of commercial products. In this study, we have developed a multifunctional graphene oxide (GO) nanopaint by incorporating GO sheets in an alkyd resin with suitable non-toxic additives using ball milling. The drying mechanism of the GO nanopaint has been discussed. Intermolecular cross-linking between GO and the lipid chains in the alkyd resin was studied by Fourier transform infra red spectra, Raman spectra, and X-ray photoelectron spectra, respectively. The prepared GO nanopaint exhibited good corrosion-resistant behavior in both acidic and high-salt-content solutions as examined by the immersion and electrochemical corrosion tests. The GO nanopaint coating possesses a corrosion protection efficiency of about 76% in salt water as estimated from the linear polarization studies. The antibacterial property of the GO nanopaint coated surface was studied against three bacterial strains (Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa) and the results showed that GO nanopaint inhibited the bacterial growth on its surface. The in situ biofouling tests demonstrated the inhibition of fouling on the GO nanopaint surface.close5
    corecore