5 research outputs found

    Regional differences in nutrient-induced secretion of gut serotonin

    Get PDF
    This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.Enterochromaffin (EC) cells located in the gastrointestinal (GI) tract provide the vast majority of serotonin (5‐HT) in the body and constitute half of all enteroendocrine cells. EC cells respond to an array of stimuli, including various ingested nutrients. Ensuing 5‐HT release from these cells plays a diverse role in regulating gut motility as well as other important responses to nutrient ingestion such as glucose absorption and fluid balance. Recent data also highlight the role of peripheral 5‐HT in various pathways related to metabolic control. Details related to the manner by which EC cells respond to ingested nutrients are scarce and as that the nutrient environment changes along the length of the gut, it is unknown whether the response of EC cells to nutrients is dependent on their GI location. The aim of the present study was to identify whether regional differences in nutrient sensing capability exist in mouse EC cells. We isolated mouse EC cells from duodenum and colon to demonstrate differential responses to sugars depending on location. Measurements of intracellular calcium concentration and 5‐HT secretion demonstrated that colonic EC cells are more sensitive to glucose, while duodenal EC cells are more sensitive to fructose and sucrose. Short‐chain fatty acids (SCFAs), which are predominantly synthesized by intestinal bacteria, have been previously associated with an increase in circulating 5‐HT; however, we find that SCFAs do not acutely stimulate EC cell 5‐HT release. Thus, we highlight that EC cell physiology is dictated by regional location within the GI tract, and identify differences in the regional responsiveness of EC cells to dietary sugars

    Expression of an anti-CD4 single-chain antibody fragment from the donor cornea can prolong corneal allograft survival in inbred rats

    Get PDF
    To investigate whether expression of an anti-CD4 antibody fragment (scFv) by a lentivector-transduced donor cornea can prolong rat corneal allograft survival. Methods Inbred Fischer 344 rats received penetrating corneal allografts from Wistar-Furth donors after a 3 h transduction of the donor cornea with a lentivector carrying anti-CD4scFv cDNA (Lv-CD4scFv), a lentivector carrying the reporter gene-enhanced yellow fluorescence protein (LV-eYFP), or an adenoviral vector carrying anti-CD4 scFv cDNA (Ad-CD4scFv). Unmodified controls were also performed. Graft survival was assessed by corneal clarity, and rejection was confirmed histologically. Results In organ-cultured corneas, expression of anti-CD4 scFv was detected at 2 days post-transduction with the adenoviral vector, compared with 5 days post-transduction with the lentivector, and was 10-fold higher than the former. More inflammation was observed in Ad-CD4scFv-modified allografts than in Lv-CD4scFv-modified grafts at 15 days postsurgery (p=0.01). The median time to rejection for unmodified, LV-eYFP and Ad-CD4scFv grafts was day 17, compared with day 22 for Lv-CD4scFv grafts (p≤0.018). Conclusion Donor corneas transduced with a lentiviral vector carrying anti-CD4scFv cDNA showed a modest but significant prolongation in graft survival compared with unmodified, Lv-eYFP and Ad-CD4scFv grafts. However, rejection still occurred in all Lv-CD4scFv grafts, indicating that sensitisation may have been delayed but was not prevented.Australian National Health & Medical Research Council and the Ophthalmic Research Institute of Australia

    Insulin-like growth factor-II (IGF-II) prevents proinflammatory cytokine-induced apoptosis and significantly improves islet survival after transplantation

    Get PDF
    BackgroundThe early loss of functional islet mass (50-70%) due to apoptosis after clinical transplantation contributes to islet allograft failure. Insulin-like growth factor (IGF)-II is an antiapoptotic protein that is highly expressed in β-cells during development but rapidly decreases in postnatal life.MethodsWe used an adenoviral (Ad) vector to overexpress IGF-II in isolated rat islets and investigated its antiapoptotic action against exogenous cytokines interleukin-1β- and interferon-γ-induced islet cell death in vitro. Using an immunocompromised marginal mass islet transplant model, the ability of Ad-IGF-II-transduced rat islets to restore euglycemia in nonobese diabetic/severe combined immunodeficient diabetic recipients was assessed.ResultsAd-IGF-II transduction did not affect islet viability or function. Ad-IGF-II cytokine-treated islets exhibited decreased cell death (40% ± 2.8%) versus Ad-GFP and untransduced control islets (63.2% ± 2.5% and 53.6% ± 2.3%, respectively). Ad-IGF-II overexpression during cytokine treatment resulted in a marked reduction in terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive apoptotic cells (8.3% ± 1.4%) versus Ad-GFP control (41% ± 4.2%) and untransduced control islets (46.5% ± 6.2%). Western blot analysis confirmed that IGF-II inhibits apoptosis via activation of the phosphatidylinositol 3-kinase/Akt signaling pathway. Transplantation of IGF-II overexpressing islets under the kidney capsule of diabetic mice restored euglycemia in 77.8% of recipients compared with 18.2% and 47.5% of Ad-GFP and untransduced control islet recipients, respectively (PConclusionsAntiapoptotic IGF-II decreases apoptosis in vitro and significantly improved islet transplant outcomes in vivo. Antiapoptotic gene transfer is a potentially powerful tool to improve islet survival after transplantation.Hughes, Amy; Mohanasundaram, Daisy; Kireta, Svjetlana; Jessup, Claire F.; Drogemuller, Chris J.; Coates, P. Toby H

    Endothelial Progenitor Cells Enhance Islet Engraftment, Influence b-Cell Function, and Modulate Islet Connexin 36 Expression

    Get PDF
    This article has been made available by the publisher under a Creative Commons Attribution Non-Commercial (CC BY NC) license. https://www.cognizantcommunication.com/general-subscription-policies/open-access-policy Accessed 10/2/15The success of pancreatic islet transplantation is limited by delayed engraftment and suboptimal function in the longer term. Endothelial progenitor cells (EPCs) represent a potential cellular therapy that may improve the engraftment of transplanted pancreatic islets. In addition, EPCs may directly affect the function of pancreatic β-cells. The objective of this study was to examine the ability of EPCs to enhance pancreatic islet transplantation in a murine syngeneic marginal mass transplant model and to examine the mechanisms through which this occurs. We found that cotransplanted EPCs improved the cure rate and initial glycemic control of transplanted islets. Gene expression data indicate that EPCs, or their soluble products, modulate the expression of the β-cell surface molecule connexin 36 and affect glucose-stimulated insulin release in vitro. In conclusion, EPCs are a promising candidate for improving outcomes in islet transplantation, and their mechanisms of action warrant further study

    RCAN1 Regulates Mitochondrial Function and Increases Susceptibility to Oxidative Stress in Mammalian Cells

    Get PDF
    Copyright © 2014 Heshan Peiris et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Mitochondria are the primary site of cellular energy generation and reactive oxygen species (ROS) accumulation. Elevated ROS levels are detrimental to normal cell function and have been linked to the pathogenesis of neurodegenerative disorders such as Down's syndrome (DS) and Alzheimer’s disease (AD). RCAN1 is abundantly expressed in the brain and overexpressed in brain of DS and AD patients. Data from nonmammalian species indicates that increased RCAN1 expression results in altered mitochondrial function and that RCAN1 may itself regulate neuronal ROS production. In this study, we have utilized mice overexpressing RCAN1 and demonstrate an increased susceptibility of neurons from these mice to oxidative stress. Mitochondria from these mice are more numerous and smaller, indicative of mitochondrial dysfunction, and mitochondrial membrane potential is altered under conditions of oxidative stress. We also generated a PC12 cell line overexpressing RCAN1 . Similar to neurons, cells have an increased susceptibility to oxidative stress and produce more mitochondrial ROS. This study demonstrates that increasing RCAN1 expression alters mitochondrial function and increases the susceptibility of neurons to oxidative stress in mammalian cells. These findings further contribute to our understanding of RCAN1 and its potential role in the pathogenesis of neurodegenerative disorders such as AD and DS
    corecore