57 research outputs found

    act up Controls Actin Polymerization to Alter Cell Shape and Restrict Hedgehog Signaling in the Drosophila Eye Disc

    Get PDF
    AbstractCells in the morphogenetic furrow of the Drosophila eye disc undergo a striking shape change immediately prior to their neuronal differentiation. We have isolated mutations in a novel gene act up (acu), that is required for this shape change. acu encodes a homolog of yeast cyclase-associated protein, which sequesters monomeric actin; we show that acu is required to prevent actin filament polymerization in the eye disc. In contrast, profilin promotes actin filament polymerization, acting epistatically to acu. However, both acu and profilin are required to prevent premature Hedgehog-induced photoreceptor differentiation ahead of the morphogenetic furrow. These findings suggest that dynamic changes in actin filaments alter cell shape to control the movement of signals that coordinate a wave of differentiation

    The Drosophila Mitochondrial Translation Elongation Factor G1 Contains a Nuclear Localization Signal and Inhibits Growth and DPP Signaling

    Get PDF
    Mutations in the human mitochondrial elongation factor G1 (EF-G1) are recessive lethal and cause death shortly after birth. We have isolated mutations in iconoclast (ico), which encodes the highly conserved Drosophila orthologue of EF-G1. We find that EF-G1 is essential during fly development, but its function is not required in every tissue. In contrast to null mutations, missense mutations exhibit stronger, possibly neomorphic phenotypes that lead to premature death during embryogenesis. Our experiments show that EF-G1 contains a secondary C-terminal nuclear localization signal. Expression of missense mutant forms of EF-G1 can accumulate in the nucleus and cause growth and patterning defects and animal lethality. We find that transgenes that encode mutant human EF-G1 proteins can rescue ico mutants, indicating that the underlying problem of the human disease is not just the loss of enzymatic activity. Our results are consistent with a model where EF-G1 acts as a retrograde signal from mitochondria to the nucleus to slow down cell proliferation if mitochondrial energy output is low

    Impact of Sequencing Targeted Therapies With High-dose Interleukin-2 Immunotherapy: An Analysis of Outcome and Survival of Patients With Metastatic Renal Cell Carcinoma From an On-going Observational IL-2 Clinical Trial: PROCLAIM

    Get PDF
    BACKGROUND: This analysis describes the outcome for patients who received targeted therapy (TT) prior to or following high-dose interleukin-2 (HD IL-2). PATIENTS AND METHODS: Patients with renal cell carcinoma (n = 352) receiving HD IL-2 were enrolled in Proleukin RESULTS: Overall, there were 4% complete response (CR), 13% partial response (PR), 39% stable disease (SD), and 43% progressive disease (PD) with HD IL-2. The median overall survival (mOS) was not reached in patients with CR, PR, or SD, and was 15.5 months in patients with PD (median follow-up, 21 months). Sixty-one patients had prior TT before HD IL-2 with an overall response rate (ORR) to HD IL-2 of 19% (1 CR, 9 PR) and an mOS of 22.1 months. One hundred forty-nine patients received TT only after HD IL-2 with an mOS of 35.5 months. One hundred forty-two patients had no TT before or after HD IL-2, and mOS was not reached. The mOS was 8.5 months in PD patients who received HD IL-2 without follow-on TT and 29.7 months in PD patients who received follow-on TT after HD IL-2. CONCLUSIONS: HD IL-2 as sole front-line therapy, in the absence of added TT, shows extended clinical benefit (CR, PR, and SD). Patients with PD after HD IL-2 appear to benefit from follow-on TT. Patients who progressed on TT and received follow-on HD IL-2 experienced major clinical benefit. HD IL-2 therapy should be considered in eligible patients

    Lipid Modifications of Sonic Hedgehog Ligand Dictate Cellular Reception and Signal Response

    Get PDF
    Sonic hedgehog (Shh) signaling regulates cell growth during embryonic development, tissue homeostasis and tumorigenesis. Concentration-dependent cellular responses to secreted Shh protein are essential for tissue patterning. Shh ligand is covalently modified by two lipid moieties, cholesterol and palmitate, and their hydrophobic properties are known to govern the cellular release and formation of soluble multimeric Shh complexes. However, the influences of the lipid moieties on cellular reception and signal response are not well understood.We analyzed fully lipidated Shh and mutant forms to eliminate one or both adducts in NIH3T3 mouse embryonic fibroblasts. Quantitative measurements of recombinant Shh protein concentration, cellular localization, and signaling potency were integrated to determine the contributions of each lipid adduct on ligand cellular localization and signaling potency. We demonstrate that lipid modification is required for cell reception, that either adduct is sufficient to confer cellular association, that the cholesterol adduct anchors ligand to the plasma membrane and that the palmitate adduct augments ligand internalization. We further show that signaling potency correlates directly with cellular concentration of Shh ligand.The findings of this study demonstrate that lipid modification of Shh determines cell concentration and potency, revealing complementary functions of hydrophobic modification in morphogen signaling by attenuating cellular release and augmenting reception of Shh protein in target tissues

    The DOCK Protein Sponge Binds to ELMO and Functions in Drosophila Embryonic CNS Development

    Get PDF
    Cell morphogenesis, which requires rearrangement of the actin cytoskeleton, is essential to coordinate the development of tissues such as the musculature and nervous system during normal embryonic development. One class of signaling proteins that regulate actin cytoskeletal rearrangement is the evolutionarily conserved CDM (C. elegans Ced-5, human DOCK180, Drosophila Myoblast city, or Mbc) family of proteins, which function as unconventional guanine nucleotide exchange factors for the small GTPase Rac. This CDM-Rac protein complex is sufficient for Rac activation, but is enhanced upon the association of CDM proteins with the ELMO/Ced-12 family of proteins. We identified and characterized the role of Drosophila Sponge (Spg), the vertebrate DOCK3/DOCK4 counterpart as an ELMO-interacting protein. Our analysis shows Spg mRNA and protein is expressed in the visceral musculature and developing nervous system, suggesting a role for Spg in later embryogenesis. As maternal null mutants of spg die early in development, we utilized genetic interaction analysis to uncover the role of Spg in central nervous system (CNS) development. Consistent with its role in ELMO-dependent pathways, we found genetic interactions with spg and elmo mutants exhibited aberrant axonal defects. In addition, our data suggests Ncad may be responsible for recruiting Spg to the membrane, possibly in CNS development. Our findings not only characterize the role of a new DOCK family member, but help to further understand the role of signaling downstream of N-cadherin in neuronal development

    Reduced SERCA Function Preferentially Affects Wnt Signaling by Retaining E-Cadherin in the Endoplasmic Reticulum

    No full text
    Summary: Calcium homeostasis in the lumen of the endoplasmic reticulum is required for correct processing and trafficking of transmembrane proteins, and defects in protein trafficking can impinge on cell signaling pathways. We show here that mutations in the endoplasmic reticulum calcium pump SERCA disrupt Wingless signaling by sequestering Armadillo/β-catenin away from the signaling pool. Armadillo remains bound to E-cadherin, which is retained in the endoplasmic reticulum when calcium levels there are reduced. Using hypomorphic and null SERCA alleles in combination with the loss of the plasma membrane calcium channel Orai allowed us to define three distinct thresholds of endoplasmic reticulum calcium. Wingless signaling is sensitive to even a small reduction, while Notch and Hippo signaling are disrupted at intermediate levels, and elimination of SERCA function results in apoptosis. These differential and opposing effects on three oncogenic signaling pathways may complicate the use of SERCA inhibitors as cancer therapeutics. : Suisse and Treisman describe genetic conditions that reduce calcium in the endoplasmic reticulum to three distinct extents. They find that Wnt signaling is more sensitive to changes in calcium levels than the Notch and Hippo pathways, potentially complicating the use of calcium pump inhibitors as cancer therapeutics. Keywords: calcium, endoplasmic reticulum, SERCA, Wnt, Hippo, Notch, E-cadherin, β-catenin, Drosophila, wing dis

    Two Subunits Specific to the PBAP Chromatin Remodeling Complex Have Distinct and Redundant Functions during Drosophila Development▿ †

    No full text
    Chromatin remodeling complexes control the availability of DNA binding sites to transcriptional regulators. Two distinct conserved forms of the SWI/SNF class of complexes are characterized by the presence of specific accessory subunits. In Drosophila, the core Brahma complex associates either with Osa to form the BAP complex or with Bap170 and Bap180 to form the PBAP complex. osa mutations reproduce only a subset of the developmental phenotypes caused by mutations in subunits of the core complex. To test whether the PBAP complex performs the remaining functions, we generated mutations in bap170 and bap180. Surprisingly, we found that Bap180 is not essential for viability, although it is required in ovarian follicle cells for normal eggshell development. Bap170 is necessary to stabilize the Bap180 protein, but a mutant form that retains this function is sufficient for both survival and fertility. The two subunits act redundantly to allow metamorphosis; using gene expression profiling of bap170 bap180 double mutants, we found that the PBAP complex regulates genes involved in tissue remodeling and immune system function. Finally, we generated mutants lacking Bap170, Bap180, and Osa in the germ line to demonstrate that the core Brahma complex can function in oogenesis without any of these accessory subunits

    The novel SAM domain protein Aveugle is required for Raf activation in the Drosophila EGF receptor signaling pathway

    No full text
    Activation of the Raf kinase by GTP-bound Ras is a poorly understood step in receptor tyrosine kinase signaling pathways. One such pathway, the epidermal growth factor receptor (EGFR) pathway, is critical for cell differentiation, survival, and cell cycle regulation in many systems, including the Drosophila eye. We have identified a mutation in a novel gene, aveugle, based on its requirement for normal photoreceptor differentiation. The phenotypes of aveugle mutant cells in the eye and wing imaginal discs resemble those caused by reduction of EGFR pathway function. We show that aveugle is required between ras and raf for EGFR signaling in the eye and for mitogen-activated protein kinase phosphorylation in cell culture. aveugle encodes a small protein with a sterile α motif (SAM) domain that can physically interact with the scaffold protein connector enhancer of Ksr (Cnk). We propose that Aveugle acts together with Cnk to promote Raf activation, perhaps by recruiting an activating kinase
    corecore