40 research outputs found

    The paleopolyploid nature of the soybean genome: duplicate gene identification, regional sequence characterization and expression studies

    Get PDF
    The paleopolyploid nature of the soybean genome was investigated through bioinformatic analysis of ESTs, sequencing of homeologous BAC clones and functional analysis of retained duplicate genes. From ESTs, 294 soybean contig pairs were identified representing retained transcribed duplicate genes. Clustering of synonymous distances between each gene pair identified two mixtures of normal distributions corresponding to two rounds of genome duplication approximately 14.5 and 45 million years ago. Ratios of nonsynonymous to synonymous distances showed that most duplicate gene pairs are under purifying selection. Pearson correlation coefficients of EST-based expression patterns between duplicate pairs illustrated both retain expression and uncorrelated expression. Homeologous soybean BAC clones were sequenced to better understand structural divergence in paleopolyploid regions. Annotation of these BACs anchored by N-hydroxycinnamoyl/benzoyltransferase (HCBT) genes showed that gene conservation in both order and orientation is surprisingly strongly. An extended comparison to Medicago truncatula and Arabidopsis thaliana demonstrated a network of synteny with conserved genes interrupted by blocks with no synteny. Another 4 BACs corresponding to five o-6 fatty acid desaturase (FAD2) genes were sequenced. These desaturases are responsible for the conversion of oleic acid to linoleic acid. Sequence comparisons between the regions showed that the soybean genome is a mosaic with some regions retaining high sequence conservation in both the genic and intergenic regions while others have only FAD2 genes in common. Genetic linkage analysis of all sequenced BACs showed that most mapped to linkage groups with previously identified syntenic markers. Reverse transcriptase-PCR analysis of the retained homeologs showed that in the tissues sampled, some homeologs have not diverged greatly in their expression profiles, while others provide excellent examples of potential sub- or neofunctionalization. Reverse transcriptase-PCR analysis of the five FAD2 genes showed that FAD2-2B and FAD2-2C copies are the best candidates for temperature dependent expression changes in developing pod tissue. Semi-quantitative RT-PCR confirmed these results with FAD2-2C showing upwards of an eight-fold increase in expression in developing pods grown in cooler conditions relative to those grown in warm conditions. These results suggest a candidate gene for decreasing the levels of linoleic acid in developing pods grown in cooler climates

    Paralog analyses reveal gene duplication events and genes under positive selection in Ixodes scapularis and other ixodid ticks

    Get PDF
    Background: Hard ticks (family Ixodidae) are obligatory hematophagous ectoparasites of worldwide medical and veterinary importance. The haploid genomes of multiple species of ixodid ticks exceed 1 Gbp, prompting questions regarding gene, segmental and whole genome duplication in this phyletic group. The availability of the genome assembly for the black legged tick, Ixodes scapularis, and transcriptome datasets for multiple species of ticks offers an opportunity to assess the contribution of gene duplication to the genome. Here we developed a bioinformatics pipeline to identify and analyze duplicated genes (paralogs) using gene models from the prostriate tick, I. scapularis IscaW1.1 annotation and expressed sequence tags (ESTs) from I. scapularis and the metastriate ticks, Rhipicephalus microplus (southern cattle tick), R. appendiculatus (brown ear tick) and Amblyomma variegatum (tropical bont tick). Results: Approximately 1-2 % of I. scapularis gene models and 2-14 % of ESTs from the four species represent duplicated genes. The ratio of non-synonymous to synonymous nucleotide substitution rates suggests ~ 25 % of duplicated genes are under positive selection pressure in each species. Analyses of synonymous substitution rates provide evidence for two duplication events in I. scapularis and R. microplus involving several hundred genes. Conservative molecular clock estimates based on synonymous substitution rates for species of Anopheles mosquitoes and the fruit fly, Drosophila melanogaster, suggest these events occurred within the last 50 MYA. Mapping of paralogs to the I. scapularis genome assembly supports tandem, or possibly segmental duplication events. Conclusions: The present study marks the first genome-level analyses of gene duplication for the Ixodidae and provides insights into mechanisms shaping genome evolution in this group. At least two duplication events involving hundreds of genes may have occurred independently in the lineages prostriata and metastriata, with tandem and segmental duplication the most likely mechanisms for paralog generation. Duplicated genes under positive selection pressure may be linked to emerging functions in the tick and represent important candidates for further study

    Integration of physical and genetic maps of common bean through BAC-derived microsatellite markers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Common bean (<it>Phaseolus vulgaris </it>L.) is the most important legume for direct human consumption and the goal of this study was to integrate a recently constructed physical map for the species with a microsatellite based genetic map using a BAC library from the genotype G19833 and the recombinant inbred line population DOR364 × G19833.</p> <p>Results</p> <p>We searched for simple sequence repeats (SSRs) in the 89,017 BAC-end sequences (BES) from the physical map and genetically mapped any polymorphic BES-SSRs onto the genetic map. Among the BES it was possible to identify 623 contig-linked SSRs, most of which were highly AT-rich. A subgroup of 230 di-nucleotide and tri-nucleotide based SSR primer pairs from these BACs was tested on the mapping parents with 176 single copy loci and 114 found to be polymorphic markers. Of these, 99 were successfully integrated into the genetic map. The 99 linkages between the genetic and physical maps corresponded to an equal number of contigs containing a total of 5,055 BAC clones.</p> <p>Conclusions</p> <p>Class II microsatellites were more common in the BES than longer class I microsatellites. Both types of markers proved to be valuable for linking BAC clones to the genetic map and were successfully placed across all 11 linkage groups. The integration of common bean physical and genetic maps is an important part of comparative genome analysis and a prelude to positional cloning of agronomically important genes for this crop.</p

    A Consensus Map in Cultivated Hexaploid Oat Reveals Conserved Grass Synteny with Substantial Subgenome Rearrangement

    Get PDF
    Hexaploid oat ( L., 2 = 6 = 42) is a member of the Poaceae family and has a large genome (∼12.5 Gb) containing 21 chromosome pairs from three ancestral genomes. Physical rearrangements among parental genomes have hindered the development of linkage maps in this species. The objective of this work was to develop a single high-density consensus linkage map that is representative of the majority of commonly grown oat varieties. Data from a cDNA-derived single-nucleotide polymorphism (SNP) array and genotyping-by-sequencing (GBS) were collected from the progeny of 12 biparental recombinant inbred line populations derived from 19 parents representing oat germplasm cultivated primarily in North America. Linkage groups from all mapping populations were compared to identify 21 clusters of conserved collinearity. Linkage groups within each cluster were then merged into 21 consensus chromosomes, generating a framework consensus map of 7202 markers spanning 2843 cM. An additional 9678 markers were placed on this map with a lower degree of certainty. Assignment to physical chromosomes with high confidence was made for nine chromosomes. Comparison of homeologous regions among oat chromosomes and matches to orthologous regions of rice ( L.) reveal that the hexaploid oat genome has been highly rearranged relative to its ancestral diploid genomes as a result of frequent translocations among chromosomes. Heterogeneous chromosome rearrangements among populations were also evident, probably accounting for the failure of some linkage groups to match the consensus. This work contributes to a further understanding of the organization and evolution of hexaploid grass genomes

    Population Genomics Related to Adaptation in Elite Oat Germplasm

    Get PDF
    Six hundred thirty five oat ( L.) lines and 4561 single-nucleotide polymorphism (SNP) loci were used to evaluate population structure, linkage disequilibrium (LD), and genotype–phenotype association with heading date. The first five principal components (PCs) accounted for 25.3% of genetic variation. Neither the eigenvalues of the first 25 PCs nor the cross-validation errors from = 1 to 20 model-based analyses suggested a structured population. However, the PC and = 2 model-based analyses supported clustering of lines on spring oat vs. southern United States origin, accounting for 16% of genetic variation ( < 0.0001). Single-locus -statistic () in the highest 1% of the distribution suggested linkage groups that may be differentiated between the two population subgroups. Population structure and kinship-corrected LD of = 0.10 was observed at an average pairwise distance of 0.44 cM (0.71 and 2.64 cM within spring and southern oat, respectively). On most linkage groups LD decay was slower within southern lines than within the spring lines. A notable exception was found on linkage group Mrg28, where LD decay was substantially slower in the spring subpopulation. It is speculated that this may be caused by a heterogeneous translocation event on this chromosome. Association with heading date was most consistent across location-years on linkage groups Mrg02, Mrg12, Mrg13, and Mrg24
    corecore