7 research outputs found

    Transcorneal Electrical Stimulation Reduces Neurodegenerative Process in a Mouse Model of Glaucoma

    Get PDF
    Glaucoma is a neurodegenerative disease in which the retinal ganglion cell axons of the optic nerve degenerate concomitant with synaptic changes in the retina, leading finally to death of the retinal ganglion cells (RGCs). Electrical stimulation has been used to improve neural regeneration in a variety of systems, including in diseases of the retina. Therefore, the focus of this study was to investigate whether transcorneal electrical stimulation (TES) in the DBA2/J mouse model of glaucoma could improve retinal or optic nerve pathology and serve as a minimally invasive treatment option. Mice (10 months-old) received 21 sessions of TES over 8 weeks, after which we evaluated RGC number, axon number, and anterograde axonal transport using histology and immunohistochemistry. To gain insight into the mechanism of proposed protection, we also evaluated inflammation by quantifying CD3+ T-cells and Iba1+ microglia; perturbations in metabolism were shown via the ratio pAMPK to AMPK, and changes in trophic support were tested using protein capillary electrophoresis. We found that TES resulted in RGC axon protection, a reduction in inflammatory cells and their activation, improved energy homeostasis, and a reduction of the cell death-associated p75NTR. Collectively, the data indicated that TES maintained axons, decreased inflammation, and increased trophic factor support, in the form of receptor presence and energy homeostasis, suggesting that electrical stimulation impacts several facets of the neurodegenerative process in glaucoma

    Dorsal root ganglia neurite outgrowth measured as a function of changes in microelectrode array resistance.

    No full text
    Current research in prosthetic device design aims to mimic natural movements using a feedback system that connects to the patient's own nerves to control the device. The first step in using neurons to control motion is to make and maintain contact between neurons and the feedback sensors. Therefore, the goal of this project was to determine if changes in electrode resistance could be detected when a neuron extended a neurite to contact a sensor. Dorsal root ganglia (DRG) were harvested from chick embryos and cultured on a collagen-coated carbon nanotube microelectrode array for two days. The DRG were seeded along one side of the array so the processes extended across the array, contacting about half of the electrodes. Electrode resistance was measured both prior to culture and after the two day culture period. Phase contrast images of the microelectrode array were taken after two days to visually determine which electrodes were in contact with one or more DRG neurite or tissue. Electrodes in contact with DRG neurites had an average change in resistance of 0.15 MΩ compared with the electrodes without DRG neurites. Using this method, we determined that resistance values can be used as a criterion for identifying electrodes in contact with a DRG neurite. These data are the foundation for future development of an autonomous feedback resistance measurement system to continuously monitor DRG neurite outgrowth at specific spatial locations
    corecore