40 research outputs found

    An exploratory survey on the awareness and usage of clinical practice guidelines among clinical pharmacists

    Get PDF
    Background: The NHLBI has not developed clinical practice guidelines since 2007. As a result, multiple organizations have released competing guidelines. This has created confusion and debate among clinicians as to which recommendations are most applicable for practice. Objectives: To explore preliminary attitudes, awareness, and usage of clinical practice guidelines in practice and teaching for hypertension, dyslipidemia and asthma among clinical pharmacists. Methods: Clinical pharmacists across the US were surveyed electronically over a two week period in Spring 2019 regarding utilization and knowledge of practice guidelines for hypertension, dyslipidemia, and asthma. Clinical cases were included to evaluate application of guidelines. Descriptive statistics, Chi-square analysis, and Wilcoxon signed-rank test were conducted. Statistical signiïŹcance level was set to 0.01 to account for multiple tests conducted on the same survey participants. Results: Forty-eight, 34, and 28 pharmacists voluntarily completed hypertension, dyslipidemia, and asthma survey questions, respectively. Interactions by disease state (p \u3c 0.001) revealed more pharmacists (93%) reporting to have ≀50% patient load in managing asthma and more pharmacists (95%) had read the full summary/report of the most recent hypertension guideline. Primary reasons why the most recent guideline was not selected were also significantly different by disease state (interaction; p \u3c 0.001). For dyslipidemia and asthma, pharmacists had a higher mean rating of agreement (p \u3c0.007) in having the most conïŹdence in the most recent as compared to older guidelines. Proportionally more clinical cases were answered correctly (interaction; p \u3c0.001) when pharmacists applied the most recent guideline for hypertension (84%), while the opposite outcome was found for asthma (27%). Conclusion: While more pharmacists selected the most recent guideline for practice and teaching, there was inconsistent application of guidelines to clinical cases. Further studies with a larger representation of pharmacists are warranted to more deïŹnitively determine factors inïŹ‚uencing guideline preference and usage

    The Canine Oral Microbiome

    Get PDF
    Determining the bacterial composition of the canine oral microbiome is of interest for two primary reasons. First, while the human oral microbiome has been well studied using molecular techniques, the oral microbiomes of other mammals have not been studied in equal depth using culture independent methods. This study allows a comparison of the number of bacterial taxa, based on 16S rRNA-gene sequence comparison, shared between humans and dogs, two divergent mammalian species. Second, canine oral bacteria are of interest to veterinary and human medical communities for understanding their roles in health and infectious diseases. The bacteria involved are mostly unnamed and not linked by 16S rRNA-gene sequence identity to a taxonomic scheme. This manuscript describes the analysis of 5,958 16S rRNA-gene sequences from 65 clone libraries. Full length 16S rRNA reference sequences have been obtained for 353 canine bacterial taxa, which were placed in 14 bacterial phyla, 23 classes, 37 orders, 66 families, and 148 genera. Eighty percent of the taxa are currently unnamed. The bacterial taxa identified in dogs are markedly different from those of humans with only 16.4% of oral taxa are shared between dogs and humans based on a 98.5% 16S rRNA sequence similarity cutoff. This indicates that there is a large divergence in the bacteria comprising the oral microbiomes of divergent mammalian species. The historic practice of identifying animal associated bacteria based on phenotypic similarities to human bacteria is generally invalid. This report describes the diversity of the canine oral microbiome and provides a provisional 16S rRNA based taxonomic scheme for naming and identifying unnamed canine bacterial taxa

    Thrive: Success Strategies for the Modern-Day Faculty Member

    Get PDF
    The THRIVE collection is intended to help faculty thrive in their roles as educators, scholars, researchers, and clinicians. Each section contains a variety of thought-provoking topics that are designed to be easily digested, guide personal reflection, and put into action. Please use the THRIVE collection to help: Individuals study topics on their own, whenever and wherever they want Peer-mentoring or other learning communities study topics in small groups Leaders and planners strategically insert faculty development into existing meetings Faculty identify campus experts for additional learning, grand rounds, etc. If you have questions or want additional information on a topic, simply contact the article author or email [email protected]://digitalcommons.unmc.edu/facdev_books/1000/thumbnail.jp

    Loss of Metal Ions, Disulfide Reduction and Mutations Related to Familial ALS Promote Formation of Amyloid-Like Aggregates from Superoxide Dismutase

    Get PDF
    Mutations in the gene encoding Cu-Zn superoxide dismutase (SOD1) are one of the causes of familial amyotrophic lateral sclerosis (FALS). Fibrillar inclusions containing SOD1 and SOD1 inclusions that bind the amyloid-specific dye thioflavin S have been found in neurons of transgenic mice expressing mutant SOD1. Therefore, the formation of amyloid fibrils from human SOD1 was investigated. When agitated at acidic pH in the presence of low concentrations of guanidine or acetonitrile, metalated SOD1 formed fibrillar material which bound both thioflavin T and Congo red and had circular dichroism and infrared spectra characteristic of amyloid. While metalated SOD1 did not form amyloid-like aggregates at neutral pH, either removing metals from SOD1 with its intramolecular disulfide bond intact or reducing the intramolecular disulfide bond of metalated SOD1 was sufficient to promote formation of these aggregates. SOD1 formed amyloid-like aggregates both with and without intermolecular disulfide bonds, depending on the incubation conditions, and a mutant SOD1 lacking free sulfhydryl groups (AS-SOD1) formed amyloid-like aggregates at neutral pH under reducing conditions. ALS mutations enhanced the ability of disulfide-reduced SOD1 to form amyloid-like aggregates, and apo-AS-SOD1 formed amyloid-like aggregates at pH 7 only when an ALS mutation was also present. These results indicate that some mutations related to ALS promote formation of amyloid-like aggregates by facilitating the loss of metals and/or by making the intramolecular disulfide bond more susceptible to reduction, thus allowing the conversion of SOD1 to a form that aggregates to form resembling amyloid. Furthermore, the occurrence of amyloid-like aggregates per se does not depend on forming intermolecular disulfide bonds, and multiple forms of such aggregates can be produced from SOD1

    Common, low-frequency, rare, and ultra-rare coding variants contribute to COVID-19 severity

    Get PDF
    The combined impact of common and rare exonic variants in COVID-19 host genetics is currently insufficiently understood. Here, common and rare variants from whole-exome sequencing data of about 4000 SARS-CoV-2-positive individuals were used to define an interpretable machine-learning model for predicting COVID-19 severity. First, variants were converted into separate sets of Boolean features, depending on the absence or the presence of variants in each gene. An ensemble of LASSO logistic regression models was used to identify the most informative Boolean features with respect to the genetic bases of severity. The Boolean features selected by these logistic models were combined into an Integrated PolyGenic Score that offers a synthetic and interpretable index for describing the contribution of host genetics in COVID-19 severity, as demonstrated through testing in several independent cohorts. Selected features belong to ultra-rare, rare, low-frequency, and common variants, including those in linkage disequilibrium with known GWAS loci. Noteworthily, around one quarter of the selected genes are sex-specific. Pathway analysis of the selected genes associated with COVID-19 severity reflected the multi-organ nature of the disease. The proposed model might provide useful information for developing diagnostics and therapeutics, while also being able to guide bedside disease management. © 2021, The Author(s)

    Gfap-Positive Radial Glial Cells are an Essential Progenitor Population for Later-Born Neurons and Glia in the Zebrafish Spinal Cord

    Get PDF
    Radial glial cells are presumptive neural stem cells (NSCs) in the developing nervous system. The direct requirement of radial glia for the generation of a diverse array of neuronal and glial subtypes, however, has not been tested. We employed two novel transgenic zebrafish lines and endogenous markers of NSCs and radial glia to show for the first time that radial glia are essential for neurogenesis during development. By using the gfap promoter to drive expression of nuclear localized mCherry we discerned two distinct radial glial-derived cell types: a major nestin+/Sox2+ subtype with strong gfap promoter activity and a minor Sox2+ subtype lacking this activity. Fate mapping studies in this line indicate that gfap+ radial glia generate later-born CoSA interneurons, secondary motorneurons, and oligodendroglia. In another transgenic line using the gfap promoter-driven expression of the nitroreductase enzyme, we induced cell autonomous ablation of gfap+ radial glia and observed a reduction in their specific derived lineages, but not Blbp+ and Sox2+/gfap-negative NSCs, which were retained and expanded at later larval stages. Moreover, we provide evidence supporting classical roles of radial glial in axon patterning, blood-brain barrier formation, and locomotion. Our results suggest that gfap+ radial glia represent the major NSC during late neurogenesis for specific lineages, and possess diverse roles to sustain the structure and function of the spinal cord. These new tools will both corroborate the predicted roles of astroglia and reveal novel roles related to development, physiology, and regeneration in the vertebrate nervous system
    corecore