6 research outputs found

    Effects of forest heterogeneity on occurrence and abundance of the scale-backed antbird, Hylophylax poecilinotus (Aves: Thamnophilidae), in the Amazon forest

    Get PDF
    Recently, a significant number of studies on neotropical forest bird communities have focused on factors influencing their richness, abundance, and habitat selection. However, few of them have considered populations or individual species, and how habitat structure affects their distribution and abundance. In this study, we investigated how the combined effects of some forest structure components affect the occurrence and abundance of a resident bird species, the scale-backed antbird Hylophylax poecilinotus (Cabanis, 1847). We tested the null hypothesis of no difference between the variation in forest structure components at locations where birds occurred and at locations where they did not. In a pristine Terra Firme forest at the Ducke Reserve, Manaus, we recorded bird occurrence and abundance using mist nets in 56 transects (1 km long each) within a 9 × 9 km trail grid covering 6400 ha. Also in the same 56 transects, we set 50 × 50 m plots and recorded the following seven components of forest structure and landscape: 1) canopy opening, 2) leaf litter, 3) tree abundance, 4) logs, 5) snags, 6) streams, and 7) elevation. We evaluated their effects on avian occurrence and abundance by using models of Multiple Logistic Regression (for bird occurrence) and Multiple Linear Regression (for bird abundance). The results suggested that H. poecilinotus occurred significantly more often in lowland areas, in areas located farther away from streams, and in areas bearing thicker leaf litter. Hylophylax poecilinotus was also more abundant in lowland areas and in areas located further away from streams. Overall, the results indicated that environmental heterogeneity produced by variation in forest structure components affects habitat use by this bird species in the Amazon forest

    Overview of the EUROfusion Tokamak Exploitation programme in support of ITER and DEMO

    Get PDF
    Within the 9th European Framework programme, since 2021 EUROfusion is operating five tokamaks under the auspices of a single Task Force called ‘Tokamak Exploitation’. The goal is to benefit from the complementary capabilities of each machine in a coordinated way and help in developing a scientific output scalable to future largre machines. The programme of this Task Force ensures that ASDEX Upgrade, MAST-U, TCV, WEST and JET (since 2022) work together to achieve the objectives of Missions 1 and 2 of the EUROfusion Roadmap: i) demonstrate plasma scenarios that increase the success margin of ITER and satisfy the requirements of DEMO and, ii) demonstrate an integrated approach that can handle the large power leaving ITER and DEMO plasmas. The Tokamak Exploitation task force has therefore organized experiments on these two missions with the goal to strengthen the physics and operational basis for the ITER baseline scenario and for exploiting the recent plasma exhaust enhancements in all four devices (PEX: Plasma EXhaust) for exploring the solution for handling heat and particle exhaust in ITER and develop the conceptual solutions for DEMO. The ITER Baseline scenario has been developed in a similar way in ASDEX Upgrade, TCV and JET. Key risks for ITER such as disruptions and run-aways have been also investigated in TCV, ASDEX Upgrade and JET. Experiments have explored successfully different divertor configurations (standard, super-X, snowflakes) in MAST-U and TCV and studied tungsten melting in WEST and ASDEX Upgrade. The input from the smaller devices to JET has also been proven successful to set-up novel control schemes on disruption avoidance and detachment
    corecore