43 research outputs found
Resonance Fluorescence Spectrum of a Trapped Ion Undergoing Quantum Jumps
We experimentally investigate the resonance fluorescence spectrum of single
171Yb and 172Yb ions which are laser cooled to the Lamb-Dicke regime in a
radiofrequency trap. While the fluorescence scattering of 172Yb is continuous,
the 171Yb fluorescence is interrupted by quantum jumps because a nonvanishing
rate of spontaneous transitions leads to electron shelving in the metastable
hyperfine sublevel 2D3/2(F=2). The average duration of the resulting dark
periods can be varied by changing the intensity of a repumping laser field.
Optical heterodyne detection is employed to analyze the fluorescence spectrum
near the Rayleigh elastic scattering peak. It is found that the stochastic
modulation of the fluorescence emission by quantum jumps gives rise to a
Lorentzian component in the fluorescence spectrum, and that the linewidth of
this component varies according to the average duration of the dark
fluorescence periods. The experimental observations are in quantitative
agreement with theoretical predictions.Comment: 14 pages including 4 figures, pdf file, fig.1 replace
Preferential decoding of emotion from human non-linguistic vocalizations versus speech prosody
This study used event-related brain potentials (ERPs) to compare the time course of emotion processing from non-linguistic vocalizations versus speech prosody, to test whether vocalizations are treated preferentially by the neurocognitive system. Participants passively listened to vocalizations or pseudo-utterances conveying anger, sadness, or happiness as the EEG was recorded. Simultaneous effects of vocal expression type and emotion were analyzed for three ERP components (N100, P200, late positive component). Emotional vocalizations and speech were differentiated very early (N100) and vocalizations elicited stronger, earlier, and more differentiated P200 responses than speech. At later stages (450–700 ms), anger vocalizations evoked a stronger late positivity (LPC) than other vocal expressions, which was similar but delayed for angry speech. Individuals with high trait anxiety exhibited early, heightened sensitivity to vocal emotions (particularly vocalizations). These data provide new neurophysiological evidence that vocalizations, as evolutionarily primitive signals, are accorded precedence over speech-embedded emotions in the human voice
New insights into the genetic etiology of Alzheimer's disease and related dementias
Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele
Multiancestry analysis of the HLA locus in Alzheimer’s and Parkinson’s diseases uncovers a shared adaptive immune response mediated by HLA-DRB1*04 subtypes
Across multiancestry groups, we analyzed Human Leukocyte Antigen (HLA) associations in over 176,000 individuals with Parkinson’s disease (PD) and Alzheimer’s disease (AD) versus controls. We demonstrate that the two diseases share the same protective association at the HLA locus. HLA-specific fine-mapping showed that hierarchical protective effects of HLA-DRB1*04 subtypes best accounted for the association, strongest with HLA-DRB1*04:04 and HLA-DRB1*04:07, and intermediary with HLA-DRB1*04:01 and HLA-DRB1*04:03. The same signal was associated with decreased neurofibrillary tangles in postmortem brains and was associated with reduced tau levels in cerebrospinal fluid and to a lower extent with increased Aβ42. Protective HLA-DRB1*04 subtypes strongly bound the aggregation-prone tau PHF6 sequence, however only when acetylated at a lysine (K311), a common posttranslational modification central to tau aggregation. An HLA-DRB1*04-mediated adaptive immune response decreases PD and AD risks, potentially by acting against tau, offering the possibility of therapeutic avenues
Mice lacking integrin β3 expression exhibit altered response to chronic stress
Recent studies indicate multiple roles for integrin αvβ3 in adult neurons, including response to pharmacological agents such as cocaine and selective serotonin reuptake inhibitors. In this study, we examined the role of the integrin β3 gene (Itgb3) in the response to environmental stimuli by subjecting Itgb3+/+ and Itgb3−/− mice to unpredictable chronic mild stressors. We found that genetic abrogation of integrin β3 expression elicits an exaggerated vulnerability to chronic unpredictable stress in the open field test. In this test, chronic stress elicited significant decreases in stereotypic behavior and horizontal locomotor activity, including increases in anxiety behaviors. Mild chronic stress led to reductions in dopamine turnover in midbrains of Itgb3+/+, but not Itgb3−/− mice, suggesting a disruption of stress-dependent regulation of DA homeostasis. Chronic stress elicited altered synaptic expression of syntaxin and synaptophysin in midbrains of Itgb3−/− mice, when compared to Itgb3+/+. Semi-quantitative Western blot studies revealed that the synaptic expression, but not total tissue expression, of multiple signaling proteins is correlated with integrin αv levels in the midbrain. Moreover, loss of integrin β3 expression modifies this correlation network. Together, these findings demonstrate that Itgb3−/− mice display a pattern of changes indicating disrupted regulation of midbrain synaptic systems involved in conferring resilience to mild stressors
Exploring Quality Influencing Factors for Frozen Food Industry
Quality is the grade of excellence or level of acceptability by the buyers. For the frozen food industry, it can be defined as the composite of those features which have significance in determining the level of acceptability by the consumer. This study was to analyse the relationship between storage, transportation, stock control, packaging, and raw material on the quality of frozen food. The research methodology of this work was a combination of observation and interview, and survey from 55 Malaysian frozen-food small-enterprise. From the findings, only two factors, Packaging, and raw material came to significantly and positively affect the quality of the frozen food. The findings of this study could be an asset for food industries to have a better understanding of the quality control of their products
Serotonin transporter and integrin beta 3 genes interact to modulate serotonin uptake in mouse brain
Archaeological cereals as an isotope record of long-term soil health and anthropogenic amendment in southern Scandinavia
Maintaining soil health is integral to agricultural production, and the archaeological record contains multiple lines of palaeoclimatic and palaeoenvironmental proxy evidence that can contribute to the understanding and analysis of long-term trajectories of change that are key for contextualizing 21st century global environmental challenges. Soil is a capital resource and its nutrient balance is modified by agricultural activities, making it necessary to ensure soil productivity is maintained and managed through human choices and actions. Since prehistory this has always been the case; soil is a non-renewable resource within a human lifetime. Here, we present and interpret carbon and nitrogen isotope analysis of charred cereals from southern Scandinavia. Anthropogenic effects on soils are evident from the initiation of farming 6000 years ago, as is amendment to counteract its effects. The earliest cereals were planted on pristine soils, and by the late Neolithic, agriculture extensified. By the Iron Age it was necessary to significantly amend depleted soils to maintain crop yields. We propose that these data provide a record of soil water retention, net precipitation and amendment. From the start of the Neolithic there is a concurrent decrease in both Δ13C and δ15N, mitigated only by the replacement of soil organic content in the form of manure in the Iron Age. The cereal isotopes provide a record of trajectories of agricultural sustainability and anthropogenic adaptation for nearly the entire history of farming in the region