7,283 research outputs found
Analysis of the need for skilled workers in the construction industry
Includes bibliographical references
The Band Excitation Method in Scanning Probe Microscopy for Rapid Mapping of Energy Dissipation on the Nanoscale
Mapping energy transformation pathways and dissipation on the nanoscale and
understanding the role of local structure on dissipative behavior is a
challenge for imaging in areas ranging from electronics and information
technologies to efficient energy production. Here we develop a novel Scanning
Probe Microscopy (SPM) technique in which the cantilever is excited and the
response is recorded over a band of frequencies simultaneously rather than at a
single frequency as in conventional SPMs. This band excitation (BE) SPM allows
very rapid acquisition of the full frequency response at each point (i.e.
transfer function) in an image and in particular enables the direct measurement
of energy dissipation through the determination of the Q-factor of the
cantilever-sample system. The BE method is demonstrated for force-distance and
voltage spectroscopies and for magnetic dissipation imaging with sensitivity
close to the thermomechanical limit. The applicability of BE for various SPMs
is analyzed, and the method is expected to be universally applicable to all
ambient and liquid SPMs.Comment: 32 pages, 9 figures, accepted for publication in Nanotechnolog
You Are Special : Shame and Grace in Children\u27s Literature
Children\u27s literature has a profound influence on its readers. It often comes into the home without regard to its content or the effect it can have on a child. This article addresses the broad strokes of child development, how unprocessed or poorly processed shame can hinder the growth of children, books that can be used in the processing of shame, and therapeutic case studies in which these books have been used
A Computational-Experimental Approach Identifies Mutations That Enhance Surface Expression of an Oseltamivir-Resistant Influenza Neuraminidase
The His274 → Tyr (H274Y) oseltamivir (Tamiflu) resistance mutation causes a substantial decrease in the total levels of surface-expressed neuraminidase protein and activity in early isolates of human seasonal H1N1 influenza, and in the swine-origin pandemic H1N1. In seasonal H1N1, H274Y only became widespread after the occurrence of secondary mutations that counteracted this decrease. H274Y is currently rare in pandemic H1N1, and it remains unclear whether secondary mutations exist that might similarly counteract the decreased neuraminidase surface expression associated with this resistance mutation in pandemic H1N1. Here we investigate the possibility of predicting such secondary mutations. We first test the ability of several computational approaches to retrospectively identify the secondary mutations that enhanced levels of surface-expressed neuraminidase protein and activity in seasonal H1N1 shortly before the emergence of oseltamivir resistance. We then use the most successful computational approach to predict a set of candidate secondary mutations to the pandemic H1N1 neuraminidase. We experimentally screen these mutations, and find that several of them do indeed partially counteract the decrease in neuraminidase surface expression caused by H274Y. Two of the secondary mutations together restore surface-expressed neuraminidase activity to wildtype levels, and also eliminate the very slight decrease in viral growth in tissue-culture caused by H274Y. Our work therefore demonstrates a combined computational-experimental approach for identifying mutations that enhance neuraminidase surface expression, and describes several specific mutations with the potential to be of relevance to the spread of oseltamivir resistance in pandemic H1N1
- …