8 research outputs found

    Human Herpesvirus 8 in Australia: DNAemia and Cumulative Exposure in Blood Donors

    No full text
    Human herpesvirus 8 (HHV-8), the causative agent of Kaposi’s sarcoma, multicentric Castleman’s disease and primary effusion lymphoma, predominantly manifests in immunocompromised individuals. However, infection in immunocompetent individuals does occur. The prevalence of HHV-8 exposure in blood donors from non-endemic countries ranges between 1.2% and 7.3%. Nothing was known about the prevalence in Australian blood donors. Therefore, this study investigated the active and cumulative exposure of HHV-8 in this cohort. Plasma samples (n = 480) were collected from eastern Australian blood donors and were tested for HHV-8 DNA by qPCR, and for HHV-8 antibodies by two different ELISAs. Samples initially positive on either ELISA were retested in duplicate on both, and on a mock-coated ELISA. Any samples positive two or three out of the three times tested on at least one ELISA, and repeat negative on the mock-coated ELISA, were assigned as repeat positive. None of the 480 samples tested contained HHV-8 DNA. Serological testing revealed 28 samples (5.83%; 95% CI: 3.74–7.93%) had antibodies to HHV-8. There was no difference (p > 0.05) in seropositivity between sex or with increasing age. This is the first study to show serological evidence of cumulative HHV-8 exposure and no HHV-8 DNAemia within a select blood donor population in Australia. Our molecular and serological data is consistent with published results for blood donors residing in HHV-8 non-endemic countries, which shows the prevalence to be very low

    The effect of riboflavin and ultraviolet light on the infectivity of arboviruses

    No full text
    Background Arboviruses are an emerging threat to transfusion safety and rates of infection are likely to increase with the increased rainfall associated with climate change. Arboviral infections are common in Australia, where Ross River virus (RRV), Barmah Forest virus (BFV), and Murray Valley encephalitis virus (MVEV), among others, have the potential to cause disease in humans. The use of pathogen reduction technology (PRT) may be an alternative approach for blood services to manage the risk of arboviral transfusion transmission. In this study, the effectiveness of the Mirasol PRT (Terumo BCT) system at inactivating RRV, BFV, and MVEV in buffy coat (BC)-derived platelets (PLTs) was investigated. Study Design and Methods BC-derived PLT concentrates in additive solution (SSP+) were spiked with RRV, BFV, or MVEV and then treated with the Mirasol PRT system. The level of infectious virus was determined before and after treatment, and the reduction in viral infectivity was calculated. Results Treatment with PRT (Mirasol) reduced the amount of infectious virus of all three arboviruses. The greatest level of inactivation was observed for RRV (2.33 log; 99.25%), followed by BFV (1.97 log; 98.68%) and then MVEV (1.83 log; 98.42%). Conclusion Our study demonstrates that treatment of PLT concentrates with PRT (Mirasol) reduces the infectious levels of RRV, BFV, and MVEV. The relevance of the level of reduction required to prevent disease transmission by transfusion has not been fully defined and requires further investigation. In the face of a changing climate, with its associated threat to blood safety, PRT represents a proactive approach for maintaining blood safety

    Inactivation of yellow fever virus in plasma after treatment with methylene blue and visible light and in platelet concentrates following treatment with ultraviolet C light

    No full text
    Background: Yellow fever virus (YFV) is endemic to tropical and subtropical areas in South America and Africa, and is currently a major public health threat in Brazil. Transfusion transmission of the yellow fever vaccine virus has been demonstrated, which is indicative of the potential for viral transfusion transmission. An approach to manage the potential YFV transfusion transmission risk is the use of pathogen inactivation (PI) technology systems, such as THERAFLEX MB-Plasma and THERAFLEX UV-Platelets (Macopharma). We aimed to investigate the efficacy of these PI technology systems to inactivate YFV in plasma or platelet concentrates (PCs). Study design and methods: YFV spiked plasma units were treated using THERAFLEX MB-Plasma system (visible light doses: 20, 40, 60, and 120 [standard] J/cm ) in the presence of methylene blue (approx. 0.8 μmol/L) and spiked PCs were treated using THERAFLEX UV-Platelets system (ultraviolet C doses: 0.05, 0.10, 0.15, and 0.20 [standard] J/cm ). Samples were taken before the first and after each illumination dose and tested for residual virus using a modified plaque assay. Results: YFV infectivity was reduced by an average of 4.77 log or greater in plasma treated with the THERAFLEX MB-Plasma system and by 4.8 log or greater in PCs treated with THERAFLEX UV-Platelets system. Conclusions: Our study suggests the THERAFLEX MB-Plasma and the THERAFLEX UV-Platelets systems can efficiently inactivate YFV in plasma or PCs to a similar degree as that for other arboviruses. Given the reduction levels observed in this study, these PI technology systems could be an effective option for managing YFV transfusion-transmission risk in plasma and PCs

    Dengue and chikungunya viruses in plasma are effectively inactivated after treatment with methylene blue and visible light

    No full text
    BACKGROUND: Arboviruses, such as dengue viruses (DENV) and chikungunya virus (CHIKV), pose a risk to the safe transfusion of blood components, including plasma. Pathogen inactivation is an approach to manage this transfusion transmission risk, with a number of techniques being used worldwide for the treatment of plasma. In this study, the efficacy of the THERAFLEX MB-Plasma system to inactivate all DENV serotypes (DENV-1, DENV-2, DENV-3, DENV-4) or CHIKV in plasma, using methylene blue and light illumination at 630 nm, was investigated. STUDY DESIGN AND METHODS: Pooled plasma units were spiked with DENV-1, DENV-2, DENV-3 DENV-4, or CHIKV and treated with the THERAFLEX MB-Plasma system at four light illumination doses: 20, 40, 60, and 120 (standard dose) J/cm. Pre- and posttreatment samples were collected and viral infectivity was determined. The reduction in viral infectivity was calculated for each dose. RESULTS: Treatment of plasma with the THERAFLEX MB-Plasma system resulted in at least a 4.46-log reduction in all DENV serotypes and CHIKV infectious virus. The residual infectivity for each was at the detection limit of the assay used at 60 J/cm, with dose dependency also observed. CONCLUSIONS: Our study demonstrated the THERAFLEX MB-Plasma system can reduce the infectivity of all DENV serotypes and CHIKV spiked into plasma to the detection limit of the assay used at half of the standard illumination dose. This suggests this system has the capacity to be an effective option for managing the risk of DENV or CHIKV transfusion transmission in plasma

    Inactivation of dengue, chikungunya, and Ross River viruses in platelet concentrates after treatment with ultraviolet C light

    No full text
    BACKGROUND Arboviruses, including dengue (DENV 1-4), chikungunya (CHIKV), and Ross River (RRV), are emerging viruses that are a risk for transfusion safety globally. An approach for managing this risk is pathogen inactivation, such as the THERAFLEX UV-Platelets system. We investigated the ability of this system to inactivate the above mentioned arboviruses. STUDY DESIGN AND METHODS DENV 1-4, CHIKV, or RRV were spiked into buffy coat (BC)-derived platelet (PLT) concentrates in additive solution and treated with the THERAFLEX UV-Platelets system at the following doses: 0.05, 0.1, 0.15, and 0.2 J/cm (standard dose). Pre- and posttreatment samples were taken for each dose, and the level of viral infectivity was determined. RESULTS At the standard ultraviolet C (UVC) dose (0.2 J/cm), viral inactivation of at least 4.43, 6.34, and 5.13 log or more, was observed for DENV 1-4, CHIKV, and RRV, respectively. A dose dependency in viral inactivation was observed with increasing UVC doses. CONCLUSIONS Our study has shown that DENV, CHIKV, and RRV, spiked into BC-derived PLT concentrates, were inactivated by the THERAFLEX UV-Platelets system to the limit of detection of our assay, suggesting that this system could contribute to the safety of PLT concentrates with respect to these emerging arboviruses

    Reduction of Zika virus infectivity in platelet concentrates after treatment with ultraviolet C light and in plasma after treatment with methylene blue and visible light

    No full text
    BACKGROUNDZika virus (ZIKV) has emerged as a potential threat to transfusion safety worldwide. Pathogen inactivation is one approach to manage this risk. In this study, the efficacy of the THERAFLEX UV-Platelets system and THERAFLEX MB-Plasma system to inactivate ZIKV in platelet concentrates (PCs) and plasma was investigated

    Implications of dengue outbreaks for blood supply, Australia

    Get PDF
    Dengue outbreaks have increased in size and frequency in Australia, and transfusion-transmitted dengue poses a risk to transfusion safety. Using whole blood samples collected during the large 2008–2009 dengue epidemic, we estimated the risk for a dengue-infectious blood donation as ≈1 in 7,146 (range 2,218–50,021)
    corecore