8 research outputs found

    The Thermodynamics of Ligand Association and Molecular Recognition of Cationic and Metallated Porphyrins and Ruthenium Complexes with Model DNA Constructs

    Get PDF
    Molecular recognition, particularly as it applies to strong binding interactions between complementary ligand/receptor molecules in solution, is important in such varied areas as molecular biology, pharmacology, synthetic chemistry, and chemical detection. Strong binding is the additive result of a number of specific, weak, non-covalent interactions occurring between complementary molecules. This dissertation reports on the energetics of forming complexes between small molecules and model DNA constructs. Ligands included cationic and metallated cationic porphyrins and polyheterocyclic ruthenium compounds. DNA receptors included double stranded B-DNAs (hairpin and short linear sequences) as well G-quadruplex DNAs. Thermodynamic data were collected using isothermal titration calorimetry, circular dichroism spectropolarimetry, ultraviolet-visible spectroscopy, and mass spectrometry. The measured thermodynamic parameters included the changes in free energy, enthalpy and entropy for ligand/receptor complex formation as well as the stoichiometry of the stable complexes. The first section of this dissertation reports that the binding of cationic porphyrins to model G-quadruplex DNA may proceed through two pathways, end stacking and intercalation. Modulating the number of pyridinium groups on a pyridinium substituted porphyrin yielded differing binding thermodynamics leading to the understanding that a balance of surface area, charge, and geometry affect the ability of a porphyrin to bind to G-quadruplex DNA. Further investigations into the binding of metallated porphyrins developed the understanding that the geometry of the central metal ion affected not only the thermodynamics but could also inhibit the intercalative mode. It was previously shown that the high affinity binding for binuclear polyheterocyclic ruthenium compounds proceeds through an intercalative mode. To further understand the binding process and the structureunction relationship of the ligand components, the binding of smaller mononuclear complexes that were representative of portions of the binuclear complex was examined in this dissertation. While limiting the intercalative ability lowered the binding affinity, the mononuclear complex with the full intercalating bridge was able bind to DNA with a higher affinity than the binuclear complex. These studies have been successful in part in determining the contributions of numerous weak interactions including: charge (Coulombic interactions), H-bonding, hydrophobic interactions, and solvent structure (solvation changes), to the overall energetics of this molecular recognition process. The first section of this dissertation reports that the binding of cationic porphyrins to model G-quadruplex DNA may proceed through two pathways, end stacking and intercalation. Modulating the number of pyridinium groups on a pyridinium substituted porphyrin yielded differing binding thermodynamics leading to the understanding that a balance of surface area, charge, and geometry affect the ability of a porphyrin to bind to G-quadruplex DNA. Further investigations into the binding of metallated porphyrins developed the understanding that the geometry of the central metal ion affected not only the thermodynamics but could also inhibit the intercalative mode. It was previously shown that the high affinity binding for binuclear polyheterocyclic ruthenium compounds proceeds through intercalation. To further understand the binding process and the structureunction relationship of the ligand components, the binding of smaller mononuclear complexes that were representative of portions of the binuclear complex was examined in this dissertation. While limiting the intercalative ability lowered the binding affinity, the mononuclear complex with the full intercalating bridge was able bind to DNA with a higher affinity than the binuclear complex. These studies have been successful in part in determining the contributions of numerous weak interactions including: charge (Coulombic interactions), H-bonding, hydrophobic interactions, and solvent structure (solvation changes), to the overall energetics of this molecular recognition process

    Differential Organic Carbon Mineralization Responses to Soil Moisture in Three Different Soil Orders Under Mixed Forested System

    Get PDF
    Soil microbial respiration is one of the largest sources of carbon (C) emissions to the atmosphere in terrestrial ecosystems, which is strongly dependent on multiple environmental variables including soil moisture. Soil moisture content is strongly dependent on soil texture, and the combined effects of texture and moisture on microbial respiration are complex and less explored. Therefore, this study examines the effects of soil moisture on the mineralization of soil organic C Soil organic carbon in three different soils, Ultisol, Alfisol and Vertisol, collected from mixed forests of Georgia, Missouri, and Texas, United States , respectively. A laboratory microcosm experiment was conducted for 90 days under different moisture regimes. Soil respiration was measured weekly, and destructive harvests were conducted at 1, 15, 60, and 90 days after incubation to determine extractable organic C (EOC), phospholipid fatty acid based microbial community, and C-acquiring hydrolytic extracellular enzyme activities (EEA). The highest cumulative respiration in Ultisol was observed at 50% water holding capacity (WHC), in Alfisol at 100% water holding capacity, and in Vertisol at 175% WHC. The trends in Extractable Organic Carbon were opposite to that of cumulative microbial respiration as the moisture levels showing the highest respiration showed the lowest EOC concentration in all soil types. Also, extracellular enzyme activities increased with increase in soil moisture in all soils, however, respiration and EEA showed a decoupled relationship in Ultisol and Alfisol soils. Soil moisture differences did not influence microbial community composition

    Carcinoma of the Tongue in Norway and Wisconsin I. Incidence and Prognosis Related to Sex and Age

    No full text

    Measurement of pseudorapidity distributions of charged particles in proton-proton collisions at sqrt(s) = 8 TeV by the CMS and TOTEM experiments

    No full text
    Pseudorapidity ( η\eta ) distributions of charged particles produced in proton–proton collisions at a centre-of-mass energy of 8  TeV~\text {TeV} are measured in the ranges η<2.2|\eta | < 2.2 and 5.3<η<6.45.3 < |\eta | < 6.4 covered by the CMS and TOTEM detectors, respectively. The data correspond to an integrated luminosity of L=45μb1\mathcal {L} = 45 \mu {\mathrm {b}}^{-1} . Measurements are presented for three event categories. The most inclusive category is sensitive to 91–96 % of the total inelastic proton–proton cross section. The other two categories are disjoint subsets of the inclusive sample that are either enhanced or depleted in single diffractive dissociation events. The data are compared to models used to describe high-energy hadronic interactions. None of the models considered provide a consistent description of the measured distributions
    corecore