912 research outputs found

    Human 14-3-3 gamma protein results in abnormal cell proliferation in the developing eye of Drosophila melanogaster

    Get PDF
    BACKGROUND:14-3-3 proteins are a family of adaptor proteins that participate in a wide variety of cellular processes. Recent evidence indicates that the expression levels of these proteins are elevated in some human tumors providing circumstantial evidence for their involvement in human cancers. However, the mechanism through which these proteins act in tumorigenesis is uncertain.RESULTS:To determine whether elevated levels of 14-3-3 proteins may perturb cell growth we overexpressed human 14-3-3 gamma (h14-3-3 gamma) in Drosophila larvae using the heat shock promoter or the GMR-Gal4 driver and then examined the effect that this had on cell proliferation in the eye imaginal discs of third instar larvae. We found that induction of h14-3-3 gamma resulted in the abnormal appearance of replicating cells in the differentiating proneural photoreceptor cells of eye imaginal discs where h14-3-3 gamma was driven by the heat shock promoter. Similarly, we found that driving h14-3-3 gamma expression specifically in developing eye discs with the GMR-Gal4 driver resulted in increased numbers of replicative cells following the morphogenetic furrow. Interestingly, we found that the effects of overexpressing h1433 gamma on eye development were increased in a genetic background where String (cdc25) function was compromised.CONCLUSION:Taken together our results indicate that h14-3-3 gamma can promote abnormal cell proliferation and may act through Cdc25. This has important implications for 14-3-3 gamma as an oncogene as it suggests that elevated levels of 14-3-3 may confer a growth advantage to cells that overexpress it.This item is part of the UA Faculty Publications collection. For more information this item or other items in the UA Campus Repository, contact the University of Arizona Libraries at [email protected]

    Genescene: Biomedical Text and Data Mining

    Get PDF
    To access the content of digital texts efficiently, it is necessary to provide more sophisticated access than keyword based searching. GeneScene provides biomedical researchers with research findings and background relations automatically extracted from text and experimental data. These provide a more detailed overview of the information available. The extracted relations were evaluated by qualified researchers and are precise. A qualitative ongoing evaluation of the current online interface indicates that this method to search the literature is more useful and efficient than keyword based searching

    Mannan Molecular Substructures Control Nanoscale Glucan Exposure in Candida

    Get PDF
    Cell wall mannans of Candida albicans mask β-(1,3)-glucan from recognition by Dectin-1, contributing to innate immune evasion. Glucan exposures are predominantly single receptor-ligand interaction sites of nanoscale dimensions. Candida species vary in basal glucan exposure and molecular complexity of mannans. We used super-resolution fluorescence imaging and a series of protein mannosylation mutants in C. albicans and C. glabrata to investigate the role of specific N-mannan features in regulating the nanoscale geometry of glucan exposure. Decreasing acid labile mannan abundance and α-(1,6)-mannan backbone length correlated most strongly with increased density and nanoscopic size of glucan exposures in C. albicans and C. glabrata, respectively. Additionally, a C. albicans clinical isolate with high glucan exposure produced similarly perturbed N-mannan structures and elevated glucan exposure geometry. Thus, acid labile mannan structure influences the nanoscale features of glucan exposure, impacting the nature of the pathogenic surface that triggers immunoreceptor engagement, aggregation, and signaling. Graus et al. find that N-mannan structural features regulated by Candida mannosyltransfersases control glucan exposure. Loss of mannan increased the frequency and size of glucan exposures and changed multivalent receptor engagement. Changes to mannan structure in a bloodstream isolate are associated with elevated glucan exposure at the nanoscale

    Lymphocytic colitis presenting as difficult diarrhoea in an African woman: a case report and review of the literature

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Lymphocytic colitis is an uncommon intestinal disorder that presents with chronic diarrhoea. It is treatable, but in the developing world, its diagnosis may often prove difficult. Data and reports of this condition in Africa are scarce because most medical centres lack a functional gastrointestinal endoscopy unit that would aid in the diagnosis.</p> <p>Case presentation</p> <p>We present the case of a 53-year-old Nigerian woman with pathogen-negative chronic diarrhoea and a family history of chronic diarrhoea. She responded well to treatment after colonoscopy and colonic biopsy successfully diagnosed her illness.</p> <p>Conclusion</p> <p>Referral of patients with pathogen-negative chronic diarrhoea to medical centres that have facilities for colonoscopy and biopsy is important in the developing world.</p

    Resistance to ursodeoxycholic acid-induced growth arrest can also result in resistance to deoxycholic acid-induced apoptosis and increased tumorgenicity

    Get PDF
    BACKGROUND: There is a large body of evidence which suggests that bile acids increase the risk of colon cancer and act as tumor promoters, however, the mechanism(s) of bile acids mediated tumorigenesis is not clear. Previously we showed that deoxycholic acid (DCA), a tumorogenic bile acid, and ursodeoxycholic acid (UDCA), a putative chemopreventive agent, exhibited distinct biological effects, yet appeared to act on some of the same signaling molecules. The present study was carried out to determine whether there is overlap in signaling pathways activated by tumorogenic bile acid DCA and chemopreventive bile acid UDCA. METHODS: To determine whether there was an overlap in activation of signaling pathways by DCA and UDCA, we mutagenized HCT116 cells and then isolated cell lines resistant to UDCA induced growth arrest. These lines were then tested for their response to DCA induced apoptosis. RESULTS: We found that a majority of the cell lines resistant to UDCA-induced growth arrest were also resistant to DCA-induced apoptosis, implying an overlap in DCA and UDCA mediated signaling. Moreover, the cell lines which were the most resistant to DCA-induced apoptosis also exhibited a greater capacity for anchorage independent growth. CONCLUSION: We conclude that UDCA and DCA have overlapping signaling activities and that disregulation of these pathways can lead to a more advanced neoplastic phenotype
    corecore