2 research outputs found

    vcferr: Development, validation, and application of a single nucleotide polymorphism genotyping error simulation framework [version 1; peer review: 1 approved, 2 approved with reservations]

    Get PDF
    Motivation: Genotyping error can impact downstream single nucleotide polymorphism (SNP)-based analyses. Simulating various modes and levels of error can help investigators better understand potential biases caused by miscalled genotypes. Methods: We have developed and validated vcferr, a tool to probabilistically simulate genotyping error and missingness in variant call format (VCF) files. We demonstrate how vcferr could be used to address a research question by introducing varying levels of error of different type into a sample in a simulated pedigree, and assessed how kinship analysis degrades as a function of the kind and type of error. Software availability: vcferr is available for installation via PyPi (https://pypi.org/project/vcferr/) or conda (https://anaconda.org/bioconda/vcferr). The software is released under the MIT license with source code available on GitHub (https://github.com/signaturescience/vcferr

    Evaluation of FluSight influenza forecasting in the 2021–22 and 2022–23 seasons with a new target laboratory-confirmed influenza hospitalizations

    Get PDF
    Accurate forecasts can enable more effective public health responses during seasonal influenza epidemics. For the 2021–22 and 2022–23 influenza seasons, 26 forecasting teams provided national and jurisdiction-specific probabilistic predictions of weekly confirmed influenza hospital admissions for one-to-four weeks ahead. Forecast skill is evaluated using the Weighted Interval Score (WIS), relative WIS, and coverage. Six out of 23 models outperform the baseline model across forecast weeks and locations in 2021–22 and 12 out of 18 models in 2022–23. Averaging across all forecast targets, the FluSight ensemble is the 2nd most accurate model measured by WIS in 2021–22 and the 5th most accurate in the 2022–23 season. Forecast skill and 95% coverage for the FluSight ensemble and most component models degrade over longer forecast horizons. In this work we demonstrate that while the FluSight ensemble was a robust predictor, even ensembles face challenges during periods of rapid change
    corecore