40 research outputs found
Avid 18F-FDG Uptake in Idiopathic Tumoral Calcinosis Mimicking Lymph Node Metastasis
Tumoral calcinosis is a benign condition characterized by periarticular calcified lesions that is frequently observed in patients with chronic renal failure. Tumoral calcinosis often presents with subcutaneous masses and joint swelling. We present a case of tumoral calcinosis with dramatically increased 18F-fluoro-2-deoxy-d-glucose (18F-FDG) uptake on positron emission tomography/computed tomography (PET/CT) that mimicked lymphoma or lymph node metastases
Reporting and Handling of Indeterminate Bone Scan Results in the Staging of Prostate Cancer:A Systematic Review
Bone scintigraphy is key in imaging skeletal metastases in newly diagnosed prostate cancer. Unfortunately, a notable proportion of scans are not readily classified as positive or negative but deemed indeterminate. The extent of reporting of indeterminate bone scans and how such scans are handled in clinical trials are not known. A systematic review was conducted using electronic databases up to October 2016. The main outcome of interest was the reporting of indeterminate bone scans, analyses of how such scans were managed, and exploratory analyses of the association of study characteristics and the reporting of indeterminate bone scan results. Seventy-four eligible clinical trials were identified. The trials were mostly retrospective (85%), observational (95%), large trials (median 195 patients) from five continents published over four decades. The majority of studies had university affiliation (72%), and an author with imaging background (685). Forty-five studies (61%) reported an indeterminate option for the bone scan and 23 studies reported the proportion of indeterminate scans (median 11.4%). Most trials (44/45, 98%) reported how to handle indeterminate scans. Most trials (n = 39) used add-on supplementary imaging, follow-up bone scans, or both. Exploratory analyses showed a significant association of reporting of indeterminate results and number of patients in the study (p = 0.024) but failed to reach statistical significance with other variables tested. Indeterminate bone scan for staging of prostate cancer was insufficiently reported in clinical trials. In the case of indeterminate scans, most studies provided adequate measures to obtain the final status of the patients
Pre-treatment levels of inflammatory markers and chemotherapy completion rates in patients with early-stage breast cancer
Author's accepted manuscriptBackground Chemotherapy efficacy is largely dependent on treatment adherence, defned by the relative dose intensity (RDI). Identifcation of new modifable risk factors associated with low RDI might improve chemotherapy delivery. Here, we evaluated the association between low RDI and pre-chemotherapy factors, including patient- and treatment-related characteristics and markers of infammation. Methods This exploratory analysis assessed data from 267 patients with early-stage breast cancer scheduled to undergo (neo-)adjuvant chemotherapy included in the Physical training and Cancer (Phys-Can) trial. The association between low RDI, defned as<85%, patient-related (age, body mass index, co-morbid condition, body surface area) and treatment-related factors (cancer stage, receptor status, chemotherapy duration, chemotherapy dose, granulocyte colony-stimulating factor) was investigated. Analyses further included the association between RDI and pre-chemotherapy levels of interleukin (IL)-6, IL-8, IL-10, C-reactive protein (CRP) and Tumor Necrosis Factor-alpha (TNF-α) in 172 patients with available blood samples. Results An RDI of<85% occurred in 31 patients (12%). Univariable analysis revealed a signifcant association with a chemotherapy duration above 20 weeks (p<0.001), chemotherapy dose (p=0.006), pre-chemotherapy IL-8 (OR 1.61; 95% CI (1.01; 2.58); p=0.040) and TNF-α (OR 2.2 (1.17; 4.53); p=0.019). In multivariable analyses, infammatory cytokines were signifcant association with low RDI for IL-8 (OR: 1.65 [0.99; 2.69]; p=0.044) and TNF-α (OR 2.95 [1.41; 7.19]; p=0.007). Conclusions This exploratory analysis highlights the association of pre-chemotherapy IL-8 and TNF-α with low RDI of chemotherapy for breast cancer. IL-8 and TNF-α may therefore potentially help to identify patients at risk for experiencing dose reductions.acceptedVersio
Multiancestry analysis of the HLA locus in Alzheimer’s and Parkinson’s diseases uncovers a shared adaptive immune response mediated by HLA-DRB1*04 subtypes
Across multiancestry groups, we analyzed Human Leukocyte Antigen (HLA) associations in over 176,000 individuals with Parkinson’s disease (PD) and Alzheimer’s disease (AD) versus controls. We demonstrate that the two diseases share the same protective association at the HLA locus. HLA-specific fine-mapping showed that hierarchical protective effects of HLA-DRB1*04 subtypes best accounted for the association, strongest with HLA-DRB1*04:04 and HLA-DRB1*04:07, and intermediary with HLA-DRB1*04:01 and HLA-DRB1*04:03. The same signal was associated with decreased neurofibrillary tangles in postmortem brains and was associated with reduced tau levels in cerebrospinal fluid and to a lower extent with increased Aβ42. Protective HLA-DRB1*04 subtypes strongly bound the aggregation-prone tau PHF6 sequence, however only when acetylated at a lysine (K311), a common posttranslational modification central to tau aggregation. An HLA-DRB1*04-mediated adaptive immune response decreases PD and AD risks, potentially by acting against tau, offering the possibility of therapeutic avenues
Sentimentanalys för investeringsbeslut : Pressmeddelanden och aktieutveckling - Ett försök att slå börsen med hjälp av textklassificering
To invest your money in the stock market and successfully choose the stocks which will generate the biggest returns is desired by most. The amount of public stock market information is close to limitless and crucial to making solid investment decisions. One way for companies to supply the market with important information is through press releases. In this paper, it is examined to what extent stock price movements can be modeled from press releases with the use of machine learning. The machine learning model was trained and tested on historical data using a Support Vector Machine to predict stock price movements up or down. To evaluate the model performance indices, including precision, recall and accuracy, were used. Through these, no significant correlation between the sentiment of press releases and stock price movements could be determined. To examine the model further a trade simulation was performed to see how the model would manage an equity portfolio. To perform the simulation, and limit the impact of external factors, the time between opening and closing a trade was set to one hour. Although positive growth was achieved, the portfolio performed worse than the compared stock market indices. It is hard to, with certainty, establish why it performed worse, but to improve the simulation, different trade durations, the limit of simultaneous trades and the model’s parameters could be tuned.Aktiemarknaden är en plats fylld av spekulationer. Det finns mängder med information tillgänglig för allmänheten som kan användas som beslutsunderlag för investeringar. Ett sätt för bolag att nå ut till marknaden med information är genom pressmeddelanden. Hur dessa mottas av marknaden har en påverkan på aktieutveckling och kan därför användas som beslutsunderlag vid investeringar. I denna rapport undersöks i vilken utsträckning aktieutveckling kan förutspås från pressmeddelanden med hjälp av en maskininlärningsmodell. Modellen tränades på offentliga pressmeddelanden och historiska aktiepriser, och användes för att göra en sentimentanalys på pressmeddelanden med hjälp av en Support Vector Machine och dela in datan i klasserna uppgång eller nedgång. För att utvärdera modellen användes prestationsmått utifrån vilka ingen tydlig korrelation kunde finnas mellan orden i pressmeddelanden och aktieutveckling. För att ytterligare utvärdera modellen utfördes en handelssimulering för att undersöka hur modellen kunde nyttjas för att förvalta en simulerad aktieportfölj. I simuleringen begränsades innehaven till köp eller blankning direkt vid offentliggörandet av pressmeddelandet och sälj eller återköp en timme efter. Handelssimuleringen visade på en positiv värdeutveckling under perioden, däremot lägre än de börsindex som använts som jämförelse. Varför modellen presterade sämre än index kan bero på många faktorer, däribland innehavstiden, modellens parametrar och begränsningen av samtidiga innehav
Sentimentanalys för investeringsbeslut : Pressmeddelanden och aktieutveckling - Ett försök att slå börsen med hjälp av textklassificering
To invest your money in the stock market and successfully choose the stocks which will generate the biggest returns is desired by most. The amount of public stock market information is close to limitless and crucial to making solid investment decisions. One way for companies to supply the market with important information is through press releases. In this paper, it is examined to what extent stock price movements can be modeled from press releases with the use of machine learning. The machine learning model was trained and tested on historical data using a Support Vector Machine to predict stock price movements up or down. To evaluate the model performance indices, including precision, recall and accuracy, were used. Through these, no significant correlation between the sentiment of press releases and stock price movements could be determined. To examine the model further a trade simulation was performed to see how the model would manage an equity portfolio. To perform the simulation, and limit the impact of external factors, the time between opening and closing a trade was set to one hour. Although positive growth was achieved, the portfolio performed worse than the compared stock market indices. It is hard to, with certainty, establish why it performed worse, but to improve the simulation, different trade durations, the limit of simultaneous trades and the model’s parameters could be tuned.Aktiemarknaden är en plats fylld av spekulationer. Det finns mängder med information tillgänglig för allmänheten som kan användas som beslutsunderlag för investeringar. Ett sätt för bolag att nå ut till marknaden med information är genom pressmeddelanden. Hur dessa mottas av marknaden har en påverkan på aktieutveckling och kan därför användas som beslutsunderlag vid investeringar. I denna rapport undersöks i vilken utsträckning aktieutveckling kan förutspås från pressmeddelanden med hjälp av en maskininlärningsmodell. Modellen tränades på offentliga pressmeddelanden och historiska aktiepriser, och användes för att göra en sentimentanalys på pressmeddelanden med hjälp av en Support Vector Machine och dela in datan i klasserna uppgång eller nedgång. För att utvärdera modellen användes prestationsmått utifrån vilka ingen tydlig korrelation kunde finnas mellan orden i pressmeddelanden och aktieutveckling. För att ytterligare utvärdera modellen utfördes en handelssimulering för att undersöka hur modellen kunde nyttjas för att förvalta en simulerad aktieportfölj. I simuleringen begränsades innehaven till köp eller blankning direkt vid offentliggörandet av pressmeddelandet och sälj eller återköp en timme efter. Handelssimuleringen visade på en positiv värdeutveckling under perioden, däremot lägre än de börsindex som använts som jämförelse. Varför modellen presterade sämre än index kan bero på många faktorer, däribland innehavstiden, modellens parametrar och begränsningen av samtidiga innehav
Mot Tillståndsbaserat Underhåll : En Fallstudie som Utforskar Övergången till Tillståndsbaserat Underhåll av Svenska Järnvägsfordon
This study explored the transition of maintenance of rolling stock from traditional maintenance methods to Condition-Based Maintenance (CBM) within the Swedish railway industry. Given the complexity of the Swedish railway system, which involves many interconnected actors, the research aimed to fill the knowledge gap in CBM implementation for maintenance providers from a systems perspective. This was achieved by first identifying the key perceived factors influencing this transition and then proposing necessary changes by applying the ecosystem-as-structure framework. Using a qualitative case study approach, data were collected through 16 semistructured interviews with key stakeholders within the Swedish railway industry. Thematic analysis of the data revealed four themes, from which critical factors were extracted. These factors highlighted the need for strategic collaboration among industry actors, contractual changes, and enhanced data analytics capabilities. Additionally, they underscored the importance of addressing technical and safety challenges. Recommendations for changes from a systems perspective emphasized the role of increased alignment among all actors, particularly between maintenance providers, traffic operators, and vehicle owners, to facilitate the transition. This study contributes to the literature on CBM implementation by providing a systems perspective on the transition process, while also contributing valuable insights for stakeholders in the Swedish railway industry.Denna studie undersökte övergången från traditionella underhållsmetoder till tillståndsbaserat underhåll (CBM) av spårfordon inom den svenska järnvägsindustrin. Med tanke på den komplexitet som det svenska järnvägssystemet innebär, med många sammankopplade aktörer, syftade forskningen till att fylla kunskapsluckan i CBM-implementering för underhållsleverantörer från ett systemperspektiv. Detta uppnåddes genom att först identifiera de viktigaste upplevda faktorerna som påverkar denna övergång och sedan föreslå nödvändiga förändringar genom att tillämpa ramverket ekosystem-som-struktur. Genom en kvalitativ fallstudie samlades data in via 16 semi-strukturerade intervjuer med nyckelintressenter inom den svenska järnvägsindustrin. Tematisk analys av data avslöjade fyra teman, från vilka kritiska faktorer extraherades. Dessa faktorer betonade behovet av strategiskt samarbete mellan branschaktörer, utvecklingen av lämpliga avtalsupplägg och förbättrade kunskaper inom dataanalys. Dessutom framhävde de vikten av att hantera tekniska och säkerhetrelaterade utmaningar. Rekommendationer för förändringar ur ett systemperspektiv betonade behovet av ökad samordning mellan alla aktörer, särskilt mellan underhållsleverantörer, trafikoperatörer och fordonsägare, för att underlätta övergången. Denna studie bidrar till litteraturen om CBM-implementering genom att erbjuda ett systemperspektiv på övergångsprocessen, samtidigt som den ger värdefulla insikter för intressenter inom den svenska järnvägsindustrin