23 research outputs found

    An Optimal Level-synchronous Shared-memory Parallel BFS Algorithm with Optimal parallel Prefix-sum Algorithm and its Implications for Energy Consumption

    Full text link
    We present a work-efficient parallel level-synchronous Breadth First Search (BFS) algorithm for shared-memory architectures which achieves the theoretical lower bound on parallel running time. The optimality holds regardless of the shape of the graph. We also demonstrate the implication of this optimality for the energy consumption of the program empirically. The key idea is never to use more processing cores than necessary to complete the work in any computation step efficiently. We keep the rest of the cores idle to save energy and to reduce other resource contentions (e.g., bandwidth, shared caches, etc). Our BFS does not use locks and atomic instructions and is easily extendible to shared-memory coprocessors.Comment: 2 pages, brief announcemen

    Large Language Models Based Automatic Synthesis of Software Specifications

    Full text link
    Software configurations play a crucial role in determining the behavior of software systems. In order to ensure safe and error-free operation, it is necessary to identify the correct configuration, along with their valid bounds and rules, which are commonly referred to as software specifications. As software systems grow in complexity and scale, the number of configurations and associated specifications required to ensure the correct operation can become large and prohibitively difficult to manipulate manually. Due to the fast pace of software development, it is often the case that correct software specifications are not thoroughly checked or validated within the software itself. Rather, they are frequently discussed and documented in a variety of external sources, including software manuals, code comments, and online discussion forums. Therefore, it is hard for the system administrator to know the correct specifications of configurations due to the lack of clarity, organization, and a centralized unified source to look at. To address this challenge, we propose SpecSyn a framework that leverages a state-of-the-art large language model to automatically synthesize software specifications from natural language sources. Our approach formulates software specification synthesis as a sequence-to-sequence learning problem and investigates the extraction of specifications from large contextual texts. This is the first work that uses a large language model for end-to-end specification synthesis from natural language texts. Empirical results demonstrate that our system outperforms prior the state-of-the-art specification synthesis tool by 21% in terms of F1 score and can find specifications from single as well as multiple sentences

    Accelerating Sparse Tensor Decomposition Using Adaptive Linearized Representation

    Full text link
    High-dimensional sparse data emerge in many critical application domains such as cybersecurity, healthcare, anomaly detection, and trend analysis. To quickly extract meaningful insights from massive volumes of these multi-dimensional data, scientists employ unsupervised analysis tools based on tensor decomposition (TD) methods. However, real-world sparse tensors exhibit highly irregular shapes, data distributions, and sparsity, which pose significant challenges for making efficient use of modern parallel architectures. This study breaks the prevailing assumption that compressing sparse tensors into coarse-grained structures (i.e., tensor slices or blocks) or along a particular dimension/mode (i.e., mode-specific) is more efficient than keeping them in a fine-grained, mode-agnostic form. Our novel sparse tensor representation, Adaptive Linearized Tensor Order (ALTO), encodes tensors in a compact format that can be easily streamed from memory and is amenable to both caching and parallel execution. To demonstrate the efficacy of ALTO, we accelerate popular TD methods that compute the Canonical Polyadic Decomposition (CPD) model across a range of real-world sparse tensors. Additionally, we characterize the major execution bottlenecks of TD methods on multiple generations of the latest Intel Xeon Scalable processors, including Sapphire Rapids CPUs, and introduce dynamic adaptation heuristics to automatically select the best algorithm based on the sparse tensor characteristics. Across a diverse set of real-world data sets, ALTO outperforms the state-of-the-art approaches, achieving more than an order-of-magnitude speedup over the best mode-agnostic formats. Compared to the best mode-specific formats, which require multiple tensor copies, ALTO achieves more than 5.1x geometric mean speedup at a fraction (25%) of their storage.Comment: We extend the results of our previous ICS paper to significantly improve the parallel performance of the Canonical Polyadic Alternating Least Squares (CP-ALS) algorithm for normally distributed data and the Canonical Polyadic Alternating Poisson Regression (CP-APR) algorithm for non-negative count dat
    corecore