245 research outputs found
Vertices of Gelfand-Tsetlin Polytopes
This paper is a study of the polyhedral geometry of Gelfand-Tsetlin patterns
arising in the representation theory \mathfrak{gl}_n \C and algebraic
combinatorics. We present a combinatorial characterization of the vertices and
a method to calculate the dimension of the lowest-dimensional face containing a
given Gelfand-Tsetlin pattern.
As an application, we disprove a conjecture of Berenstein and Kirillov about
the integrality of all vertices of the Gelfand-Tsetlin polytopes. We can
construct for each a counterexample, with arbitrarily increasing
denominators as grows, of a non-integral vertex. This is the first infinite
family of non-integral polyhedra for which the Ehrhart counting function is
still a polynomial. We also derive a bound on the denominators for the
non-integral vertices when is fixed.Comment: 14 pages, 3 figures, fixed attribution
On the Computation of Clebsch-Gordan Coefficients and the Dilation Effect
We investigate the problem of computing tensor product multiplicities for
complex semisimple Lie algebras. Even though computing these numbers is #P-hard
in general, we show that if the rank of the Lie algebra is assumed fixed, then
there is a polynomial time algorithm, based on counting the lattice points in
polytopes. In fact, for Lie algebras of type A_r, there is an algorithm, based
on the ellipsoid algorithm, to decide when the coefficients are nonzero in
polynomial time for arbitrary rank. Our experiments show that the lattice point
algorithm is superior in practice to the standard techniques for computing
multiplicities when the weights have large entries but small rank. Using an
implementation of this algorithm, we provide experimental evidence for
conjectured generalizations of the saturation property of
Littlewood--Richardson coefficients. One of these conjectures seems to be valid
for types B_n, C_n, and D_n.Comment: 21 pages, 6 table
Combinatorics and Geometry of Transportation Polytopes: An Update
A transportation polytope consists of all multidimensional arrays or tables
of non-negative real numbers that satisfy certain sum conditions on subsets of
the entries. They arise naturally in optimization and statistics, and also have
interest for discrete mathematics because permutation matrices, latin squares,
and magic squares appear naturally as lattice points of these polytopes.
In this paper we survey advances on the understanding of the combinatorics
and geometry of these polyhedra and include some recent unpublished results on
the diameter of graphs of these polytopes. In particular, this is a thirty-year
update on the status of a list of open questions last visited in the 1984 book
by Yemelichev, Kovalev and Kravtsov and the 1986 survey paper of Vlach.Comment: 35 pages, 13 figure
Extremal properties for dissections of convex 3-polytopes
A dissection of a convex d-polytope is a partition of the polytope into
d-simplices whose vertices are among the vertices of the polytope.
Triangulations are dissections that have the additional property that the set
of all its simplices forms a simplicial complex. The size of a dissection is
the number of d-simplices it contains. This paper compares triangulations of
maximal size with dissections of maximal size. We also exhibit lower and upper
bounds for the size of dissections of a 3-polytope and analyze extremal size
triangulations for specific non-simplicial polytopes: prisms, antiprisms,
Archimedean solids, and combinatorial d-cubes.Comment: 19 page
Random Sampling in Computational Algebra: Helly Numbers and Violator Spaces
This paper transfers a randomized algorithm, originally used in geometric
optimization, to computational problems in commutative algebra. We show that
Clarkson's sampling algorithm can be applied to two problems in computational
algebra: solving large-scale polynomial systems and finding small generating
sets of graded ideals. The cornerstone of our work is showing that the theory
of violator spaces of G\"artner et al.\ applies to polynomial ideal problems.
To show this, one utilizes a Helly-type result for algebraic varieties. The
resulting algorithms have expected runtime linear in the number of input
polynomials, making the ideas interesting for handling systems with very large
numbers of polynomials, but whose rank in the vector space of polynomials is
small (e.g., when the number of variables and degree is constant).Comment: Minor edits, added two references; results unchange
On Volumes of Permutation Polytopes
This paper focuses on determining the volumes of permutation polytopes
associated to cyclic groups, dihedral groups, groups of automorphisms of tree
graphs, and Frobenius groups. We do this through the use of triangulations and
the calculation of Ehrhart polynomials. We also present results on the theta
body hierarchy of various permutation polytopes.Comment: 19 pages, 1 figur
The Gromov Norm of the Product of Two Surfaces
We make an estimation of the value of the Gromov norm of the Cartesian
product of two surfaces. Our method uses a connection between these norms and
the minimal size of triangulations of the products of two polygons. This allows
us to prove that the Gromov norm of this product is between 32 and 52 when both
factors have genus 2. The case of arbitrary genera is easy to deduce form this
one.Comment: The journal version contains an error that invalidates one direction
of the main theorem. The present version contains an erratum, at the end,
explaining thi
Edges vs Circuits: a Hierarchy of Diameters in Polyhedra
The study of the graph diameter of polytopes is a classical open problem in
polyhedral geometry and the theory of linear optimization. In this paper we
continue the investigation initiated in [4] by introducing a vast hierarchy of
generalizations to the notion of graph diameter. This hierarchy provides some
interesting lower bounds for the usual graph diameter. After explaining the
structure of the hierarchy and discussing these bounds, we focus on clearly
explaining the differences and similarities among the many diameter notions of
our hierarchy. Finally, we fully characterize the hierarchy in dimension two.
It collapses into fewer categories, for which we exhibit the ranges of values
that can be realized as diameters
- …