245 research outputs found

    Vertices of Gelfand-Tsetlin Polytopes

    Full text link
    This paper is a study of the polyhedral geometry of Gelfand-Tsetlin patterns arising in the representation theory \mathfrak{gl}_n \C and algebraic combinatorics. We present a combinatorial characterization of the vertices and a method to calculate the dimension of the lowest-dimensional face containing a given Gelfand-Tsetlin pattern. As an application, we disprove a conjecture of Berenstein and Kirillov about the integrality of all vertices of the Gelfand-Tsetlin polytopes. We can construct for each n5n\geq5 a counterexample, with arbitrarily increasing denominators as nn grows, of a non-integral vertex. This is the first infinite family of non-integral polyhedra for which the Ehrhart counting function is still a polynomial. We also derive a bound on the denominators for the non-integral vertices when nn is fixed.Comment: 14 pages, 3 figures, fixed attribution

    On the Computation of Clebsch-Gordan Coefficients and the Dilation Effect

    Full text link
    We investigate the problem of computing tensor product multiplicities for complex semisimple Lie algebras. Even though computing these numbers is #P-hard in general, we show that if the rank of the Lie algebra is assumed fixed, then there is a polynomial time algorithm, based on counting the lattice points in polytopes. In fact, for Lie algebras of type A_r, there is an algorithm, based on the ellipsoid algorithm, to decide when the coefficients are nonzero in polynomial time for arbitrary rank. Our experiments show that the lattice point algorithm is superior in practice to the standard techniques for computing multiplicities when the weights have large entries but small rank. Using an implementation of this algorithm, we provide experimental evidence for conjectured generalizations of the saturation property of Littlewood--Richardson coefficients. One of these conjectures seems to be valid for types B_n, C_n, and D_n.Comment: 21 pages, 6 table

    Combinatorics and Geometry of Transportation Polytopes: An Update

    Full text link
    A transportation polytope consists of all multidimensional arrays or tables of non-negative real numbers that satisfy certain sum conditions on subsets of the entries. They arise naturally in optimization and statistics, and also have interest for discrete mathematics because permutation matrices, latin squares, and magic squares appear naturally as lattice points of these polytopes. In this paper we survey advances on the understanding of the combinatorics and geometry of these polyhedra and include some recent unpublished results on the diameter of graphs of these polytopes. In particular, this is a thirty-year update on the status of a list of open questions last visited in the 1984 book by Yemelichev, Kovalev and Kravtsov and the 1986 survey paper of Vlach.Comment: 35 pages, 13 figure

    Extremal properties for dissections of convex 3-polytopes

    Get PDF
    A dissection of a convex d-polytope is a partition of the polytope into d-simplices whose vertices are among the vertices of the polytope. Triangulations are dissections that have the additional property that the set of all its simplices forms a simplicial complex. The size of a dissection is the number of d-simplices it contains. This paper compares triangulations of maximal size with dissections of maximal size. We also exhibit lower and upper bounds for the size of dissections of a 3-polytope and analyze extremal size triangulations for specific non-simplicial polytopes: prisms, antiprisms, Archimedean solids, and combinatorial d-cubes.Comment: 19 page

    Random Sampling in Computational Algebra: Helly Numbers and Violator Spaces

    Get PDF
    This paper transfers a randomized algorithm, originally used in geometric optimization, to computational problems in commutative algebra. We show that Clarkson's sampling algorithm can be applied to two problems in computational algebra: solving large-scale polynomial systems and finding small generating sets of graded ideals. The cornerstone of our work is showing that the theory of violator spaces of G\"artner et al.\ applies to polynomial ideal problems. To show this, one utilizes a Helly-type result for algebraic varieties. The resulting algorithms have expected runtime linear in the number of input polynomials, making the ideas interesting for handling systems with very large numbers of polynomials, but whose rank in the vector space of polynomials is small (e.g., when the number of variables and degree is constant).Comment: Minor edits, added two references; results unchange

    On Volumes of Permutation Polytopes

    Full text link
    This paper focuses on determining the volumes of permutation polytopes associated to cyclic groups, dihedral groups, groups of automorphisms of tree graphs, and Frobenius groups. We do this through the use of triangulations and the calculation of Ehrhart polynomials. We also present results on the theta body hierarchy of various permutation polytopes.Comment: 19 pages, 1 figur

    The Gromov Norm of the Product of Two Surfaces

    Full text link
    We make an estimation of the value of the Gromov norm of the Cartesian product of two surfaces. Our method uses a connection between these norms and the minimal size of triangulations of the products of two polygons. This allows us to prove that the Gromov norm of this product is between 32 and 52 when both factors have genus 2. The case of arbitrary genera is easy to deduce form this one.Comment: The journal version contains an error that invalidates one direction of the main theorem. The present version contains an erratum, at the end, explaining thi

    Edges vs Circuits: a Hierarchy of Diameters in Polyhedra

    Full text link
    The study of the graph diameter of polytopes is a classical open problem in polyhedral geometry and the theory of linear optimization. In this paper we continue the investigation initiated in [4] by introducing a vast hierarchy of generalizations to the notion of graph diameter. This hierarchy provides some interesting lower bounds for the usual graph diameter. After explaining the structure of the hierarchy and discussing these bounds, we focus on clearly explaining the differences and similarities among the many diameter notions of our hierarchy. Finally, we fully characterize the hierarchy in dimension two. It collapses into fewer categories, for which we exhibit the ranges of values that can be realized as diameters
    corecore