12 research outputs found

    A Study of the Mechanical Properties of Naturally Aged Photopolymers Printed Using the PJM Technology

    No full text
    Additive manufacturing is being increasingly used both for rapid prototyping as well as the fabrication of finished components. It is important to determine how the properties of 3D printed materials change over time and how they affect the durability and usability of products. The aim of the research presented in this article was to find out what influence the natural aging period had on the mechanical properties, especially the tensile strength and modulus of elasticity, of specimens made from the selected photocurable resins using the PolyJet Matrix (PJM) technology. The tests involved determining the tensile strength and modulus of elasticity of specimens fabricated in 2013 and 2014 using two types of photosensitive resins, i.e., FullCure 720 and VeroWhite, respectively. Some of the specimens were stored under laboratory conditions until July 2022 and then tested using a universal testing machine. The experimental data obtained in 2022 for the naturally aged models were compared with those reported for the as-printed specimens. One of the main findings of this study was that the tensile strength and modulus of elasticity of the naturally aged specimens were largely dependent on the printing direction (model orientation on the build tray). The test results show that aging generally decreased the tensile strength of the specimens. In one case, however, an increase in this property was observed. For the X and Y printing directions, Rm declined by 27.1% and 30.7%, respectively. For the Z direction, a decrease of only 5.5% was reported, for Full Cure 720. The modulus of elasticity of the models tested in 2022 differed considerably from that reported for the as-printed objects. Higher values of the modulus of elasticity implied that the material stiffness increased over time, and this is a common phenomenon in polymers. Interesting results were obtained for VeroWhite specimens. The modulus of elasticity decreased significantly by 25.1% and 42.4% for the specimens printed in the X and Z directions, respectively. However, for the models built in the Y direction, it increased by 27.4%. The experimental data may be of significance to users of products manufactured using the PJM method as well as to researchers dealing with the durability and reliability of such materials

    The Influence of Printing Orientation on Surface Texture Parameters in Powder Bed Fusion Technology with 316L Steel

    No full text
    Laser technologies for fast prototyping using metal powder-based materials allow for faster production of prototype constructions actually used in the tooling industry. This paper presents the results of measurements on the surface texture of flat samples and the surface texture of a prototype of a reduced-mass lathe chuck, made with the additive technology—powder bed fusion. The paper presents an analysis of the impact of samples’ orientation on the building platform on the surface geometrical texture parameters (two-dimensional roughness profile parameters (Ra, Rz, Rv, and so on) and spatial parameters (Sa, Sz, and so on). The research results showed that the printing orientation has a very large impact on the quality of the surface texture and that it is possible to set digital models on the building platform (parallel—0° to the building platform plane), allowing for manufacturing models with low roughness parameters. This investigation is especially important for the design and 3D printing of microelectromechanical systems (MEMS) models, where surface texture quality and printable resolution are still a large problem

    Estimating the Approximation Uncertainty for Digital Materials Subjected to Stress Relaxation Tests

    No full text
    The main aim of the study was to determine the goodness of fit between the relaxation function described with a rheological model and the real (experimental) relaxation curves obtained for digital materials fabricated with a Connex 350 printer using the PolyJet additive manufacturing technology. The study involved estimating the uncertainty of approximation of the parameters of the theoretical relaxation curve. The knowledge of digital materials is not yet sufficient; their properties are not so well-known as those of metallic alloys or plastics used as structural materials. Intensive research is thus required to find out more about their behavior in various conditions. From the calculation results, i.e. the uncertainty of approximation of the relaxation function parameters, it is evident that the experimental curves coincide with the curves obtained by means of the solid model when the approximation uncertainty is taken into account. This suggests that the assumed solid model is well-suited to describe a real material

    Stress Relaxation and Creep of a Polymer-Aluminum Composite Produced through Selective Laser Sintering

    No full text
    This article discusses the rheological properties (stress relaxation and creep) of polymer-aluminum composite specimens fabricated through the selective laser sintering (SLS) from a commercially available powder called Alumide. The rheological data predicted using the Maxwell–Wiechert and the Kelvin–Voigt models for stress relaxation and creep, respectively, were in agreement with the experimental results. The elastic moduli and dynamic viscosities were determined with high accuracy for both models. The findings of this study can be useful to designers and users of SLS prints made from the material tested

    The Mechanical Properties of Thin-Walled Specimens Printed from a Bronze-Filled PLA-Based Composite Filament Using Fused Deposition Modelling

    No full text
    This article focuses on the mechanical property analysis of important models omitted in many scientific papers (thin-walled specimens) printed from innovative material—such as PLA + bronze composite—using fused deposition modelling technology. It discusses the printing process, the measurement of the specimen geometry, the static tensile strength tests and the microscopic examinations conducted with a scanning electron microscope. The findings of this study could be used as an input to further research into the accuracy of filament deposition and the modification of base materials with bronze powder and for the optimization of the machine design, e.g., with the use of cell structures. The experimental results indicated that the thin-walled models fabricated using FDM showed substantial differences in tensile strength, depending on the specimen’s thickness and the printing orientation. It was shown that it was not possible to test thin-walled models located on the building platform along the Z axis due to the lack of sufficient adhesion between the layers

    A Comparative Study of the Mechanical Properties of FDM 3D Prints Made of PLA and Carbon Fiber-Reinforced PLA for Thin-Walled Applications

    No full text
    This study focused on the analysis of the mechanical properties of thin-walled specimens fabricated by fused deposition modelling (FDM). Two materials were considered, i.e., polylactide (PLA) and polylactide with carbon fiber (PLA-CF). The article describes how the specimens with different thicknesses and printing orientations were designed, printed, measured to assess their geometric and dimensional accuracy, subjected to tensile testing, and examined using scanning electron microscopy. The data provided here can be used for further research aimed at improving filament deposition and modifying the base material by combining it with different components, for example carbon fiber. The investigations revealed that the properties of thin-walled elements produced by FDM varied significantly depending on the thickness. So far, this problem has not been investigated extensively. Research by analyzing the key parameter, which is the direction of printing that is important for thin-walled models, provides a lot of new information for designers and technologists and opens the way to further extended scientific research in the field of the strength analysis of thin-walled models produced by 3D printing, which is very applicable to structure optimization in the era of the industrial revolution 4.0 and progress in the LEAN manufacturing process

    Tensile Strength Analysis of Thin-Walled Polymer Glass Fiber Reinforced Samples Manufactured by 3D Printing Technology

    No full text
    The paper describes the mechanical properties, determined on the basis of a tensile strength test of a composite material based on glass-fiber reinforced polyamide and obtained by Selective Laser Sintering—SLS. The material used is PA 3200 GF. Thin walled samples with non-standard nominal thicknesses of 1, 1.4 and 1.8 mm, manufactured in three printing directions X, Y and Z, were used. The description included the impact of printing direction on the geometry of the obtained samples and tensile strength as well as the dependency of tensile strength on the sample thickness. The results can be useful for design engineers and process engineers designing thin-walled components produced with SLS. Thin samples were obtained with a considerable deviation spread of the actual dimension from the nominal one. It was found that the tensile strength of thin samples is much lower than those of standard cross-sections, which should be taken into account in the design of thin-walled elements

    An Analysis Of Tensile Test Results to Assess the Innovation Risk for an Additive Manufacturing Technology

    No full text
    The aim of this study was to assess the innovation risk for an additive manufacturing process. The analysis was based on the results of static tensile tests obtained for specimens made of photocured resin. The assessment involved analyzing the measurement uncertainty by applying the FMEA method. The structure of the causes and effects of the discrepancies was illustrated using the Ishikawa diagram. The risk priority numbers were calculated. The uncertainty of the tensile test measurement was determined for three printing orientations. The results suggest that the material used to fabricate the tensile specimens shows clear anisotropy of the properties in relation to the printing direction

    Estimating the Uncertainty of Tensile Strength Measurement for A Photocured Material Produced by Additive Manufacturing

    No full text
    The aim of this study was to estimate the measurement uncertainty for a material produced by additive manufacturing. The material investigated was FullCure 720 photocured resin, which was applied to fabricate tensile specimens with a Connex 350 3D printer based on PolyJet technology. The tensile strength of the specimens established through static tensile testing was used to determine the measurement uncertainty. There is a need for extensive research into the performance of model materials obtained via 3D printing as they have not been studied sufficiently like metal alloys or plastics, the most common structural materials. In this analysis, the measurement uncertainty was estimated using a larger number of samples than usual, i.e., thirty instead of typical ten. The results can be very useful to engineers who design models and finished products using this material. The investigations also show how wide the scatter of results is
    corecore