1,268 research outputs found

    Improving Access and Quality in Early Childhood Development Programs: Experimental Evidence from The Gambia

    Get PDF
    We evaluate two experiments of early childhood development (ECD) programs in The Gambia: one increasing access to services, and another improving service quality. In the first experiment, new community-based ECD centers were introduced to randomly chosen villages that had no pre-existing structured ECD services. In the second experiment, a randomly assigned subset of existing ECD centers received intensive provider training. We find no evidence that either intervention improved average levels of child development. Exploratory analysis suggests that the first experiment, which increased access to community-based ECD services, led to declines in child development among children from less disadvantaged households

    Fault diagnosis of PEMFC based on the AC voltage response and 1D convolutional neural network

    Get PDF
    Real-time diagnosis is required to ensure the safety, reliability, and durability of the polymer electrolyte membrane fuel cell (PEMFC) system. Two categories of methods are (1) intrusive, time consuming, or require alterations to the cell architecture but provide detailed information about the system or (2) rapid and benign but low-information-yielding. A strategy based on alternating current (AC) voltage response and one-dimensional (1D) convolutional neural network (CNN) is proposed as a methodology for detailed and rapid fuel cell diagnosis. AC voltage response signals contain within them the convoluted information that is also available via electrochemical impedance spectroscopy (EIS), such as capacitive, inductive, and diffusion processes, and direct use of time-domain signals can avoid time-frequency conversion. It also overcomes the disadvantage that EIS can only be measured under steady-state conditions. The utilization of multi-frequency excitation can make the proposed approach an ideal real-time diagnostic/characterization tool for fuel cells and other electrochemical power systems

    Open-circuit dissolution of platinum from the cathode in polymer electrolyte membrane water electrolysers

    Get PDF
    Platinum is the state-of-the-art catalyst for hydrogen evolution in polymer electrolyte membrane (PEM) water electrolysers; however, its stability has only been characterized to a limited extent in situ. This study measures platinum dissolving from the cathode during intermittent operation of a 3-electrode PEM electrolyser cell, using a differential pulse voltammetry technique that provided detection limits for platinum of less than 2 ng L−1. Water samples were periodically taken during on-off current cycling, and during periods of open-circuit voltage (OCV) platinum dissolution was detected when the cathode potential rose above 0.85 V NHE due to diffusion of oxygen from the anode. This reached a maximum dissolution rate at the highest cathode potential of 1.02 V NHE, and gradually decayed over a 90 h period. The average total amount of platinum dissolved per 90 h OCV period was estimated to be 152 ng cm−2 or 0.005% of the initial electrode catalyst mass. The dissolution mechanism was predicted to be the same as that occurring in PEM fuel cell cathodes, although being kinetically hindered in PEM electrolysers by the slow diffusion of oxygen from the anode to the cathode

    Cross-Disciplinary Genomics Approaches to Studying Emerging Fungal Infections

    Get PDF
    Emerging fungal pathogens pose a serious, global and growing threat to food supply systems, wild ecosystems, and human health. However, historic chronic underinvestment in their research has resulted in a limited understanding of their epidemiology relative to bacterial and viral pathogens. Therefore, the untargeted nature of genomics and, more widely, -omics approaches is particularly attractive in addressing the threats posed by and illuminating the biology of these pathogens. Typically, research into plant, human and wildlife mycoses have been largely separated, with limited dialogue between disciplines. However, many serious mycoses facing the world today have common traits irrespective of host species, such as plastic genomes; wide host ranges; large population sizes and an ability to persist outside the host. These commonalities mean that -omics approaches that have been productively applied in one sphere and may also provide important insights in others, where these approaches may have historically been underutilised. In this review, we consider the advances made with genomics approaches in the fields of plant pathology, human medicine and wildlife health and the progress made in linking genomes to other -omics datatypes and sets; we identify the current barriers to linking -omics approaches and how these are being underutilised in each field; and we consider how and which -omics methodologies it is most crucial to build capacity for in the near future

    The Hydro-electro-thermal Performance of Air-cooled, Open-cathode Polymer Electrolyte Fuel Cells: Combined Localised Current Density, Temperature and Water Mapping

    Get PDF
    In situ diagnostic techniques provide a means of understanding the internal workings of fuel cells so that improved designs and operating regimes can be identified. Here, a novel metrology approach is reported that combines current and temperature mapping with water visualisation using neutron radiography. The approach enables a hydro-electro-thermal performance map to be generated that is applied to an air-cooled, open-cathode polymer electrolyte fuel cell. This type of fuel cell exhibits a particularly interesting coupled relationship between water, current and heat, as the air supply has the due role of cooling the stack as well as providing the cathode reactant feed via a single source. It is found that water predominantly accumulates under the cooling channels (thickness of 70-100 μm under the cooling channels and 5-25 μm in the active channels at 0.5 A cm−2), in a similar fashion to the lands in a closed-cathode design, but contrary to passive open-cathode systems. The relationship between current, temperature and water accumulation is complex and highly dependent on location within the cell. However, there is a general trend that higher currents and cooling limitations, especially above 0.7 A cm−2 and below 3.9 × 10−3 m3 s−1, leads to temperatures above 60 °C, which dehydrate the membrane (water thickness of 10-25 um) and the cell operates below 0.5 V

    Mothers’ Social Networks and Socioeconomic Gradients of Isolation

    Get PDF
    Social connections are fundamental to human wellbeing. This paper examines the social networks of young married women in rural Odisha, India.. This is a group, for whom highly-gendered norms around marriage, mobility, and work are likely to shape opportunities to form and maintain meaningful ties with other women. We track the social networks of 2,170 mothers over four years, and find a high degree of isolation. Wealthier women and women more-advantaged castes have smaller social networks than their less-advantaged peers. These gradients are primarily driven by the fact that more-advantaged women are less likely to know other women within their same socioeconomic group than are less-advantaged women are. There exists strong homophily by socioeconomic status that is symmetric across socioeconomic groups. Mediation analysis shows that SES differences in social isolation are strongly associated to caste, ownership of toilets and distance. Further research should investigate the formation and role of female networks

    High-Density Lignin-Derived Carbon Nanofiber Supercapacitors with Enhanced Volumetric Energy Density

    Get PDF
    Supercapacitors are increasingly used in short-distance electric transportation due to their long lifetime (≈15 years) and fast charging capability (>10 A g^{−1}). To improve their market penetration, while minimizing onboard weight and maximizing space-efficiency, materials costs must be reduced (8 Wh L^{−1}). Carbon nanofibers display good gravimetric capacitance, yet their marketability is hindered by their low density (0.05–0.1 g cm^{−3}). Here, the authors increase the packing density of low-cost, free-standing carbon nanofiber mats (from 0.1 to 0.6 g cm−3) through uniaxial compression. X-ray computed tomography reveals that densification occurs by reducing the inter-fiber pore size (from 1–5 µm to 0.2–0.5 µm), which are not involved in double-layer capacitance. The improved packing density is directly proportional to the volumetric performances of the device, which reaches a volumetric capacitance of 130 F cm^{−3} and energy density of 6 Wh L^{−1} at 0.1 A g^{−1} using a loading of 3 mg cm^{−2}. The results outperform most commercial and lab-scale porous carbons synthesized from bioresources (50–100 F cm^{−3}, 1–3 Wh L^{−1} using 10 mg cm^{−2}) and contribute to the scalable design of sustainable electrodes with minimal ‘dead volume’ for efficient supercapacitors

    Towards a mechanistic understanding of particle shrinkage during biomass pyrolysis via synchrotron X-ray microtomography and in-situ radiography

    Get PDF
    Accurate modelling of particle shrinkage during biomass pyrolysis is key to the production of biochars with specific morphologies. Such biochars represent sustainable solutions to a variety of adsorption-dependent environmental remediation challenges. Modelling of particle shrinkage during biomass pyrolysis has heretofore been based solely on theory and ex-situ experimental data. Here we present the first in-situ phase-contrast X-ray imaging study of biomass pyrolysis. A novel reactor was developed to enable operando synchrotron radiography of fixed beds of pyrolysing biomass. Almond shell particles experienced more bulk shrinkage and less change in porosity than did walnut shell particles during pyrolysis, despite their similar composition. Alkaline pretreatment was found to reduce this difference in feedstock behaviour. Ex-situ synchrotron X-ray microtomography was performed to study the effects of pyrolysis on pore morphology. Pyrolysis led to a redistribution of pores away from particle surfaces, meaning newly formed surface area may be less accessible to adsorbates
    corecore