29 research outputs found

    Prediction of many-electron wavefunctions using atomic potentials: refinements and extensions to transition metals and large systems

    Full text link
    For a given many-electron molecule, it is possible to define a corresponding one-electron Schr\"odinger equation, using potentials derived from simple atomic densities, whose solution predicts fairly accurate molecular orbitals for single- and multi-determinant wavefunctions for the molecule. The energy is not predicted and must be evaluated by calculating Coulomb and exchange interactions over the predicted orbitals. Transferable potentials for first-row atoms and transition metal oxides that can be used without modification in different molecules are reported. For improved accuracy, molecular wavefunctions can be refined by slightly scaling nuclear charges and by introducing potentials optimized for functional groups. For a test set of 20 molecules representing different bonding environments, the transferable potentials with scaling give wavefunctions with energies that deviate from exact self-consistent field or configuration interaction energies by less than 0.05 eV and 0.02 eV per bond or valence electron pair, respectively. Applications to the ground and excited states of a Ti18O36 nanoparticle and chlorophyll-s are reported.Comment: 20 pages. arXiv admin note: text overlap with arXiv:1702.0685

    Prediction of many-electron wavefunctions using atomic potentials: extended basis sets and molecular dissociation

    Full text link
    A one-electron Schroedinger equation based on special one-electron potentials for atoms is shown to exist that produces orbitals for an arbitrary molecule that are sufficiently accurate to be used without modification to construct single- and multi-determinant wavefunctions. The exact Hamiltonian is used to calculate the energy variationally and to generate configuration interaction expansions. Earlier work on equilibrium geometries is extended to larger basis sets and molecular dissociation. For a test set of molecules representing different bonding environments, a single set of invariant atomic potentials gives wavefunctions with energies that deviate from configuration interaction energies based on SCF orbitals by less than 0.04 eV per bond or valence electron pair. On a single diagonalization of the Fock matrix, the corresponding errors are reduced 0.01 eV. Atomization energies are also in good agreement with CI values based on canonical SCF orbitals. Configuration interaction applications to single bond dissociations of water and glycine, and multiple bond dissociations of ethylene and oxygen produce dissociation energy curves in close agreement with CI calculations based on canonical SCF orbitals for the entire range of internuclear distances

    Estimates of electron correlation based on density expansions

    Full text link
    Methods for estimating the correlation energy of molecules and other electronic systems are discussed based on the assumption that the correlation energy can be partitioned between atomic regions. In one method, the electron density is expanded in terms of atomic contributions using rigorous electron repulsion bounds, and, in a second method, correlation contributions are associated with basis function pairs. The methods do not consider the detailed nature of localized excitations, but instead define a correlation energy per electron factor that that is unique to a specific atom. The correlation factors are basis function dependent and are determined by from configuration interaction calculations on diatomic and hydride molecules. The correlation energy estimates are compared with the results of high-level configuration interaction calculations for a test set of twenty-seven molecules representing a wide range of bonding environments (average error of 2.6%). An extension based on truncated CI calculations in which d- and hydrogen p-type functions are eliminated from the virtual space combined with estimates of dynamical correlation contributions using atomic correlation factors is discussed and applied to the dissociation of several molecules.Comment: 22 pages, 4 figure

    Final Report Theoretical Studies of Surface Reactions on Metals and Electronic Materials

    Full text link
    This proposal describes the proposed renewal of a theoretical research program on the structure and reactivity of molecules adsorbed on transition metal surfaces. A new direction of the work extends investigations to interfaces between solid surfaces, adsorbates and aqueous solutions and includes fundamental work on photoinduced electron transport into chemisorbed species and into solution. The goal is to discover practical ways to reduce water to hydrogen and oxygen using radiation comparable to that available in the solar spectrum. The work relates to two broad subject areas: photocatalytic processes and production of hydrogen from water. The objective is to obtain high quality solutions of the electronic structure of adsorbate-metal-surface-solution systems so as to allow activation barriers to be calculated and reaction mechanisms to be determined. An ab initio embedding formalism provides a route to the required accuracy. New theoretical methods developed during the previous grant period will be implemented in order to solve the large systems involved in this work. Included is the formulation of a correlation operator that is used to treat localized electron distributions such as ionic or regionally localized distributions. The correlation operator which is expressed as a two-particle projector is used in conjunction with configuration interaction

    Reaction of CH4 with substitutional Fe/Ni(111)

    No full text

    Energetics of Hydroxyl and Influence of Coadsorbed Oxygen on Metal Surfaces

    No full text

    Photoinduced Dissociation of Water and Transport of Hydrogen between Silver Clusters

    No full text
    corecore