20 research outputs found

    Implicit Density Functional Theory

    Full text link
    A fermion ground state energy functional is set up in terms of particle density, relative pair density, and kinetic energy tensor density. It satisfies a minimum principle if constrained by a complete set of compatibility conditions. A partial set, which thereby results in a lower bound energy under minimization, is obtained from the solution of model systems, as well as a small number of exact sum rules. Prototypical application is made to several one-dimensional spinless non-interacting models. The effectiveness of "atomic" constraints on model "molecules" is observed, as well as the structure of systems with only finitely many bound states.Comment: 9 pages, 4 figure

    Quasiparticle Effective Mass for the Two- and Three-Dimensional Electron Gas

    Full text link
    We calculate the quasiparticle effective mass for the electron gas in two and three dimensions in the metallic region. We employ the single particle scattering potential coming from the Sj\"{o}lander-Stott theory and enforce the Friedel sum rule by adjusting the effective electron mass in a scattering calculation. In 3D our effective mass is a monotonically decreasing function of rsr_s throughout the whole metallic domain, as implied by the most recent numerical results. In 2D we obtain reasonable agreement with the experimental data, as well as with other calculations based on the Fermi liquid theory. We also present results of a variety of different treatments for the effective mass in 2D and 3D.Comment: 12 pages, 2 figure

    Phase space reduction of the one-dimensional Fokker-Planck (Kramers) equation

    Full text link
    A pointlike particle of finite mass m, moving in a one-dimensional viscous environment and biased by a spatially dependent force, is considered. We present a rigorous mapping of the Fokker-Planck equation, which determines evolution of the particle density in phase space, onto the spatial coordinate x. The result is the Smoluchowski equation, valid in the overdamped limit, m->0, with a series of corrections expanded in powers of m. They are determined unambiguously within the recurrence mapping procedure. The method and the results are interpreted on the simplest model with no field and on the damped harmonic oscillator.Comment: 13 pages, 1 figur

    Combinatorial methods

    No full text
    corecore