2 research outputs found

    Data Analysis and Filter Optimization for Pulse-Amplitude Measurement: A Case Study on High-Resolution X-ray Spectroscopy

    Get PDF
    In this study, we present a procedure to optimize a set of finite impulse response filter (FIR) coefficients for digital pulse-amplitude measurement. Such an optimized filter is designed using an adapted digital penalized least mean square (DPLMS) method. The effectiveness of the procedure is demonstrated using a dataset from a case study on high-resolution X-ray spectroscopy based on single-photon detection and energy measurements. The energy resolutions of the Kα and Kβ lines of the Manganese energy spectrum have been improved by approximately 20%, compared to the reference values obtained by fitting individual photon pulses with the corresponding mathematical model

    A Simplified Correlation Index for Fast Real-Time Pulse Shape Recognition

    Get PDF
    A simplified correlation index is proposed to be used in real-time pulse shape recognition systems. This index is similar to the classic Pearson’s correlation coefficient, but it can be efficiently implemented in FPGA devices with far fewer logic resources and excellent performance. Numerical simulations with synthetic data and comparisons with the Pearson’s correlation show the suitability of the proposed index in applications such as the discrimination and counting of pulses with a predefined shape. Superior performance is evident in signal-to-noise ratio scenarios close to unity. FPGA implementation of Person’s method and the proposed correlation index have been successfully tested and the main results are summarized
    corecore