3 research outputs found

    Association between menopausal hormone therapy, mammographic density and breast cancer risk: results from the E3N cohort study

    No full text
    Background: Menopausal hormone therapy (MHT) is a risk factor for breast cancer (BC). Evidence suggests that its effect on BC risk could be partly mediated by mammographic density. The aim of this study was to investigate the relationship between MHT, mammographic density and BC risk using data from a prospective study. Methods: We used data from a case-control study nested within the French cohort E3N including 453 cases and 453 matched controls. Measures of mammographic density, history of MHT use during follow-up and information on potential confounders were available for all women. The association between MHT and mammographic density was evaluated by linear regression models. We applied mediation modelling techniques to estimate, under the hypothesis of a causal model, the proportion of the effect of MHT on BC risk mediated by percent mammographic density (PMD) for BC overall and by hormone receptor status. Results: Among MHT users, 4.2% used exclusively oestrogen alone compared with 68.3% who used exclusively oestrogens plus progestogens. Mammographic density was higher in current users (for a 60-year-old woman, mean PMD 33%; 95% CI 31 to 35%) than in past (29%; 27 to 31%) and never users (24%; 22 to 26%). No statistically significant association was observed between duration of MHT and mammographic density. In past MHT users, mammographic density was negatively associated with time since last use; values similar to those of never users were observed in women who had stopped MHT at least 8 years earlier. The odds ratio of BC for current versus never MHT users, adjusted for age, year of birth, menopausal status at baseline and BMI, was 1.67 (95% CI, 1.04 to 2.68). The proportion of effect mediated by PMD was 34% for any BC and became 48% when the correlation between BMI and PMD was accounted for. These effects were limited to hormone receptor-positive BC. Conclusions: Our results suggest that, under a causal model, nearly half of the effect of MHT on hormone receptor-positive BC risk is mediated by mammographic density, which appears to be modified by MHT for up to 8 years after MHT termination

    Smoking, blood DNA methylation sites and lung cancer risk

    No full text
    Altered DNA methylation (DNAm) might be a biological intermediary in the pathway from smoking to lung cancer. In this study, we investigated the contribution of differential blood DNAm to explain the association between smoking and lung cancer incidence. Blood DNAm was measured in 2321 Strong Heart Study (SHS) participants. Incident lung cancer was assessed as time to event diagnoses. We conducted mediation analysis, including validation with DNAm and paired gene expression data from the Framingham Heart Study (FHS). In the SHS, current versus never smoking and pack-years single-mediator models showed, respectively, 29 and 21 differentially methylated positions (DMPs) for lung cancer with statistically significant mediated effects (14 of 20 available, and five of 14 available, positions, replicated, respectively, in FHS). In FHS, replicated DMPs showed gene expression downregulation largely in trans, and were related to biological pathways in cancer. The multimediator model identified that DMPs annotated to the genes AHRR and IER3 jointly explained a substantial proportion of lung cancer. Thus, the association of smoking with lung cancer was partly explained by differences in baseline blood DNAm at few relevant sites. Experimental studies are needed to confirm the biological role of identified eQTMs and to evaluate potential implications for early detection and control of lung cancer.</p
    corecore