5 research outputs found

    Detecting Core-Periphery Structures by Surprise

    Get PDF
    Detecting the presence of mesoscale structures in complex networks is of primary importance. This is especially true for financial networks, whose structural organization deeply affects their resilience to events like default cascades, shocks propagation, etc. Several methods have been proposed, so far, to detect communities, i.e. groups of nodes whose connectivity is significantly large. Communities, however do not represent the only kind of mesoscale structures characterizing real-world networks: other examples are provided by bow-tie structures, core-periphery structures and bipartite structures. Here we propose a novel method to detect statistically-signifcant bimodular structures, i.e. either bipartite or core-periphery ones. It is based on a modification of the surprise, recently proposed for detecting communities. Our variant allows for bimodular nodes partitions to be revealed, by letting links to be placed either 1) within the core part and between the core and the periphery parts or 2) just between the (empty) layers of a bipartite network. From a technical point of view, this is achieved by employing a multinomial hypergeometric distribution instead of the traditional (binomial) hypergeometric one; as in the latter case, this allows a p-value to be assigned to any given (bi)partition of the nodes. To illustrate the performance of our method, we report the results of its application to several real-world networks, including social, economic and financial ones.Comment: 11 pages, 10 figures. Python code freely available at https://github.com/jeroenvldj/bimodular_surpris

    The Multilayer Structure of Corporate Networks

    Get PDF
    Various company interactions can be described by networks, for instance the ownership networks and the board membership networks. To understand the ecosystem of companies, these interactions cannot be seen in isolation. For this purpose we construct a new multilayer network of interactions between companies in Germany and in the United Kingdom, combining ownership links, social ties through joint board directors, R\&D collaborations and stock correlations in one linked multiplex dataset. We describe the features of this network and show there exists a non-trivial overlap between these different types of networks, where the different types of connections complement each other and make the overall structure more complex. This highlights that corporate control, boardroom influence and other connections have different structures and together make an even smaller corporate world than previously reported. We have a first look at the relation between company performance and location in the network structure.Comment: 14 pages, 5 figures, 3 table

    Reconstructing mesoscale network structures

    Get PDF
    When facing complex mesoscale network structures, it is generally believed that (null) models encoding the modular organization of nodes must be employed. The present paper focuses on two block structures that characterize the mesoscale organization of many real-world networks, i.e. the bow-tie and the core-periphery ones. Our analysis shows that constraining the network degree sequence is often enough to reproduce such structures, as confirmed by model selection criteria as AIC or BIC. As a byproduct, our paper enriches the toolbox for the analysis of bipartite networks - still far from being complete. The aforementioned structures, in fact, partition the networks into asymmetric blocks characterized by binary, directed connections, thus calling for the extension of a recently-proposed method to randomize undirected, bipartite networks to the directed case.Comment: 13 pages, 7 figures, accepted by the journal Complexit

    A new lot sizing and scheduling heuristic for multi-site biopharmaceutical production

    Get PDF
    Biopharmaceutical manufacturing requires high investments and long-term production planning. For large biopharmaceutical companies, planning typically involves multiple products and several production facilities. Production is usually done in batches with a substantial set-up cost and time for switching between products. The goal is to satisfy demand while minimising manufacturing, set-up and inventory costs. The resulting production planning problem is thus a variant of the capacitated lot-sizing and scheduling problem, and a complex combinatorial optimisation problem. Inspired by genetic algorithm approaches to job shop scheduling, this paper proposes a tailored construction heuristic that schedules demands of multiple products sequentially across several facilities to build a multi-year production plan (solution). The sequence in which the construction heuristic schedules the different demands is optimised by a genetic algorithm. We demonstrate the effectiveness of the approach on a biopharmaceutical lot sizing problem and compare it with a mathematical programming model from the literature. We show that the genetic algorithm can outperform the mathematical programming model for certain scenarios because the discretisation of time in mathematical programming artificially restricts the solution space
    corecore