6 research outputs found

    Low temperature transport in AC-driven Quantum Dots in the Kondo regime

    Full text link
    We present a fully nonequilibrium calculation of the low temperature transport properties of a quantum dot in the Kondo regime when an AC potential is applied to the gate voltage. We solve a time dependent Anderson model with finite on-site Coulomb interaction. The interaction self-energy is calculated up to second order in perturbation theory in the on-site interaction, in the context of the Keldysh non-equilibrium technique, and the effect of the AC voltage is taken into account exactly for all ranges of AC frequencies and AC intensities. The obtained linear conductance and time-averaged density of states of the quantum dot evolve in a non trivial way as a function of the AC frequency and AC intensity of the harmonic modulation.Comment: 30 pages,7 figure

    Magnetically tunable singlet-triplet spin qubit in a four-electron InGaAs coupled quantum dot

    Get PDF
    A pair of self-assembled InGaAs quantum dots filled with two electrons can act as a singlet-triplet spin qubit that is robust against nuclear spin fluctuations as well as charge noise. This results in a T2* coherence time two orders of magnitude longer than that of a single electron, provided the qubit is operated at a particular “sweet spot” in gate voltage. However, at this fixed operating point the ground-state splitting can no longer be tuned into resonance with e.g. another qubit, limiting the options for coupling multiple qubits. Here, we propose using a four-electron coupled quantum dot to implement a singlet-triplet qubit that features a magnetically tunable level splitting. As a first step towards full experimental realization of this qubit design, we use optical spectroscopy to demonstrate the tunability of the four-electron singlet-triplet splitting in a moderate magnetic field.ISSN:2045-232
    corecore