3 research outputs found

    The Histone Demethylase Jarid1b (Kdm5b) Is a Novel Component of the Rb Pathway and Associates with E2f-Target Genes in MEFs during Senescence

    Get PDF
    Senescence is a robust cell cycle arrest controlled by the p53 and Rb pathways that acts as an important barrier to tumorigenesis. Senescence is associated with profound alterations in gene expression, including stable suppression of E2f-target genes by heterochromatin formation. Some of these changes in chromatin composition are orchestrated by Rb. In complex with E2f, Rb recruits chromatin modifying enzymes to E2f target genes, leading to their transcriptional repression. To identify novel chromatin remodeling enzymes that specifically function in the Rb pathway, we used a functional genetic screening model for bypass of senescence in murine cells. We identified the H3K4-demethylase Jarid1b as novel component of the Rb pathway in this screening model. We find that depletion of Jarid1b phenocopies knockdown of Rb1 and that Jarid1b associates with E2f-target genes during cellular senescence. These results suggest a role for Jarid1b in Rb-mediated repression of cell cycle genes during senescence

    Validation of a deep learning computer aided system for CT based lung nodule detection, classification, and growth rate estimation in a routine clinical population.

    No full text
    ObjectiveIn this study, we evaluated a commercially available computer assisted diagnosis system (CAD). The deep learning algorithm of the CAD was trained with a lung cancer screening cohort and developed for detection, classification, quantification, and growth of actionable pulmonary nodules on chest CT scans. Here, we evaluated the CAD in a retrospective cohort of a routine clinical population.Materials and methodsIn total, a number of 337 scans of 314 different subjects with reported nodules of 3-30 mm in size were included into the evaluation. Two independent thoracic radiologists alternately reviewed scans with or without CAD assistance to detect, classify, segment, and register pulmonary nodules. A third, more experienced, radiologist served as an adjudicator. In addition, the cohort was analyzed by the CAD alone. The study cohort was divided into five different groups: 1) 178 CT studies without reported pulmonary nodules, 2) 95 studies with 1-10 pulmonary nodules, 23 studies from the same patients with 3) baseline and 4) follow-up studies, and 5) 18 CT studies with subsolid nodules. A reference standard for nodules was based on majority consensus with the third thoracic radiologist as required. Sensitivity, false positive (FP) rate and Dice inter-reader coefficient were calculated.ResultsAfter analysis of 470 pulmonary nodules, the sensitivity readings for radiologists without CAD and radiologist with CAD, were 71.9% (95% CI: 66.0%, 77.0%) and 80.3% (95% CI: 75.2%, 85.0%) (p ConclusionThe applied CAD significantly increased radiologist's detection of actionable nodules yet also minimally increasing the false positive rate. The CAD can automatically classify and quantify nodules and calculate nodule growth rate in a cohort of a routine clinical population. Results suggest this Deep Learning software has the potential to assist chest radiologists in the tasks of pulmonary nodule detection and management within their routine clinical practice
    corecore