8 research outputs found
Emission factors, fuel consumtion and emission estimates for SwedenÂŽs fishing fleet 1990-2004
Fuel consumption for the Swedish fishing fleet 1990-2004 has been estimated using statistics from the Swedish National Board of Fisheries on installed engine power. An additional estimation method was also described. Data on installed power was available for the years 1995-2004, and estimates 1990-1994 have been calculated by extrapolation. Thermal values and emission factors are based on a study conducted by SMED on behalf of the Swedish EPA in 2004. In order to fit the national fuel sales statistics, the diesel oil consumption was adjusted according to the national allocation model for international reporting. The adjusted fuel consumption accounted for about 68 700 â 93 900 m3, corresponding to about 187 â 256 ktons CO2
FortsÀttning av riktad kvalitetskontrollstudie av utslÀpp frÄn industrin i Sveriges internationella rapportering : UtslÀpp rapporterade till UNFCCC, EU Monitoring Mechanism, CLRTAP & NEC
I föreliggande studie har utslÀpp av CO2, CH4, N2O, NOx, CO, NMVOC, NH3, TSP, PM10, PM2.5, Pb, Cd, Hg, dioxin, PAH, As, Cr, Cu, Ni, Zn frÄn vissa industrier som rapporteras av Sverige till EU Monitoring Mechanism, EU:s takdirektiv (NEC), UNFCCC och CLRTAP studerats. Anledningen till studien Àr att misstankar finns att de rapporterade utslÀppen inte alltid Àr korrekta. Inom studien har utslÀpp frÄn följande industrisektorer inkluderats; raffinaderi-, cement-, jÀrn och stÄl- (primÀr och sekundÀr), metall- samt skogsindustrin. Data som rapporterats av Sverige för dessa sektorer har jÀmförts med data pÄ anlÀggnings- eller sektorsnivÄ med data frÄn andra kÀllor (miljörapporter och branschorganisationer) och skillnader har noterats. Ett antal brister har pÄtrÀffats i inventeringsdata som rapporterats internationellt och förslag pÄ förbÀttringar ges, vilket innebÀr att kvalitén kommer att höjas i internationellt rapporterade utslÀpp i framtiden, om förbÀttringsförslagen implementeras.I föreliggande studie har utslÀpp av CO2, CH4, N2O, NOx, CO, NMVOC, NH3, TSP, PM10, PM2.5, Pb, Cd, Hg, dioxin, PAH, As, Cr, Cu, Ni, Zn frÄn vissa industrier som rapporteras av Sverige till EU Monitoring Mechanism, EU:s takdirektiv (NEC), UNFCCC och CLRTAP studerats. Anledningen till studien Àr att misstankar finns att de rapporterade utslÀppen inte alltid Àr korrekta. Inom studien har utslÀpp frÄn följande industrisektorer inkluderats; raffinaderi-, cement-, jÀrn och stÄl- (primÀr och sekundÀr), metall- samt skogsindustrin. Data som rapporterats av Sverige för dessa sektorer har jÀmförts med data pÄ anlÀggnings- eller sektorsnivÄ med data frÄn andra kÀllor (miljörapporter och branschorganisationer) och skillnader har noterats. Ett antal brister har pÄtrÀffats i inventeringsdata som rapporterats internationellt och förslag pÄ förbÀttringar ges, vilket innebÀr att kvalitén kommer att höjas i internationellt rapporterade utslÀpp i framtiden, om förbÀttringsförslagen implementeras
Characterization and source term assessments of radioactive particles from Marshall Islands using non-destructive analytical techniques
Six plutonium-containing particles stemming from Runit Island soil (Marshall Islands) were characterized by non-destructive analytical and microanalytical methods. Composition and elemental distribution in the particles were studied with synchrotron radiation based micro X-ray fluorescence spectrometry. Scanning electron microscope equipped with energy dispersive X-ray detector and with wavelength dispersive system as well as a secondary ion mass spectrometer were used to examine particle surfaces. Based on the elemental composition the particles were divided into two groups: particles with pure Pu matrix, and particles where the plutonium is included in Si/O-rich matrix being more heterogenously distributed. All of the particles were identified as nuclear fuel fragments of exploded weapon components. As containing plutonium with low 240Pu/239Pu atomic ratio, less than 0.065, which corresponds to weapons-grade plutonium or a detonation with low fission yield, the particles were identified to originate from the safety test and low-yield tests conducted in the history of Runit Island. The Si/O-rich particles contained traces of 137Cs (239 + 240Pu/137Cs activity ratio higher than 2500), which indicated that a minor fission process occurred during the explosion. The average 241Am/239Pu atomic ratio in the six particles was 3.7Ă10â3 ±0.2Ă10â3 (February 2006), which indicated that plutonium in the different particles had similar age
STRENGTHENING THE EUROPEAN RARE EARTHS SUPPLY-CHAIN Challenges and policy options A REPORT BY THE EUROPEAN RARE EARTHS COMPETENCY NETWORK (ERECON)
ERECON (2014) Strengthening the European rare earths supply chain: Challengesand policy options. Kooroshy, J., G. Tiess, A. Tukker, and A. Walton (eds.).Policy recommendations:1.Maintaining and strengthening the European Rare Earth Elements (REE) skills and knowledge base through research funding, science and technology education and international cooperation.Without cutting-edge research and technical expertise, a European high-tech REE industry cannot flourish. The EC and Member States should support funding for research grants, scholarships, and training networks, and enhance European and international cooperation through coordinated calls, researcher exchanges, and joint high-level conferences.2.Creating the basis for informed decision-making on REEs through a European Critical Materials Observatory.Mapping and monitoring of REE supply chains is necessary for informed decision-making. Expertise in Europe could be pooled in a virtual Critical Materials Observatory that provides the public with consistent and authoritative knowledge on REEs (e.g., information on advanced exploration projects, prices, key demand and supply trends, and the urban mine potential).3.Support promising technologies through funding industry-led pilot plants for innovative HREE processing.The EC, industry and Member States should accelerate the commercialization and scaling up of key technologies through co-financing industry-led pilot plants. This should include pilots for REE recovery from heavy rare earths-rich minerals, direct-alloy recycling routes, process and sensor equipment for REE recycling, and REE recovery from industrial residues.4.Levelling the playing field for European HREE exploration through co-funding for prefeasibility and bankable feasibility studies.Support from federal and state governments in the U.S., Australia and Canada has played a critical role in advancing project exploration. The EC and Member States should evaluate possibilities for supporting the extensive R&D necessary for pre-feasibility and bankable feasibility studies, to avoid high quality deposits in Europe simply going unexplored.5.Making waste management REE-friendly through eco-design, incentive schemes for collecting priority waste products, and streamlining policy and waste regulation.The EC and Member States should promote recycling-friendly design to help identify and recover REE components in waste more easily. Potential incentives for stimulating REE waste collection should be evaluated and the shipment of REE wastes should be facilitated. More consistency should also be created in implementing and applying existing waste regulations.6.Boost supply security and de-risk strategic REE investment cases through enhanced cooperation among European end-users and other stakeholders.Leading end-users should engage in strategic cooperation across industry and with governments. This could include setting up a voluntary European âcritical raw materials fundâ, establishing a âEuropean Resource Allianceâ similar to the German Rohstoffallianz, and convening a high-level taskforce to examine ways in which public funding could support resilient REE supply chains for Europe