12 research outputs found

    Data from: Multilocus analyses reveal little evidence for lineage wide adaptive evolution within major clades of soft pines (Pinus subgenus Strobus)

    Full text link
    Estimates from molecular data for the fraction of new nonsynonymous mutations that are adaptive vary strongly across plant species. Much of this variation is due to differences in life-history strategies as they influence the effective population size (Ne). Ample variation for these estimates, however, remains even when comparisons are made across species with similar values of Ne. An open question thus remains as to why the large disparity for estimates of adaptive evolution exists among plant species. Here, we have estimated the distribution of deleterious fitness effects (DFE) and the fraction of adaptive nonsynonymous substitutions (α) for 11 species of soft pines (subgenus Strobus) using DNA sequence data from 167 orthologous nuclear gene fragments. Most newly arising nonsynonymous mutations were inferred to be so strongly deleterious that they would rarely become fixed. Little evidence for long-term adaptive evolution was detected, as all 11 estimates for α were not significantly different from zero. Nucleotide diversity at synonymous sites, moreover, was strongly correlated with attributes of the DFE across species, thus illustrating a strong consistency with the expectations from the Nearly Neutral Theory of molecular evolution. Application of these patterns to genome-wide expectations for these species, however, was difficult as the loci chosen for analysis were a biased set of conserved loci which greatly influenced estimates of the DFE and α. This implies that genome-wide parameter estimates will need truly genome-wide data, so that many of existing patterns documented previously for forest trees (e.g. little evidence for signature of selection) may need revision

    Association Genetics of Coastal Douglas Fir (Pseudotsuga menziesii var. menziesii, Pinaceae). I. Cold-Hardiness Related Traits

    Full text link
    Adaptation to cold is one of the greatest challenges to forest trees. This process is highly synchronized with environmental cues relating to photoperiod and temperature. Here, we use a candidate gene-based approach to search for genetic associations between 384 single-nucleotide polymorphism (SNP) markers from 117 candidate genes and 21 cold-hardiness related traits. A general linear model approach, including population structure estimates as covariates, was implemented for each marker–trait pair. We discovered 30 highly significant genetic associations [false discovery rate (FDR) Q < 0.10] across 12 candidate genes and 10 of the 21 traits. We also detected a set of 7 markers that had elevated levels of differentiation between sampling sites situated across the Cascade crest in northeastern Washington. Marker effects were small (r2 < 0.05) and within the range of those published previously for forest trees. The derived SNP allele, as measured by a comparison to a recently diverged sister species, typically affected the phenotype in a way consistent with cold hardiness. The majority of markers were characterized as having largely nonadditive modes of gene action, especially underdominance in the case of cold-tolerance related phenotypes. We place these results in the context of trade-offs between the abilities to grow longer and to avoid fall cold damage, as well as putative epigenetic effects. These associations provide insight into the genetic components of complex traits in coastal Douglas fir, as well as highlight the need for landscape genetic approaches to the detection of adaptive genetic diversity
    corecore