7 research outputs found

    Functionalized Nanoparticles as Sorbents for Removal of Toxic Species

    Get PDF
    Removal of various toxic species from aqueous streams is of great importance. Sorption is one of the important remediation procedures as it involves the use of cheap and easily available materials. Also the advantage of regeneration of the sorbent involves the possibility of using novel sorbents. Nanosorbents are very important as the removal is based on the surface phenomena and this is greatly affected by surface charge and area. Functionalization has been very important to bring about the removal of metal ions with greater selectivity

    Functionalized Nanoparticles as Sorbents for Removal of Toxic Species

    Get PDF
    Removal of various toxic species from aqueous streams is of great importance. Sorption is one of the important remediation procedures as it involves the use of cheap and easily available materials. Also the advantage of regeneration of the sorbent involves the possibility of using novel sorbents. Nanosorbents are very important as the removal is based on the surface phenomena and this is greatly affected by surface charge and area. Functionalization has been very important to bring about the removal of metal ions with greater selectivity

    Functionalized Nanoparticles as Sorbents for Removal of Toxic Species

    Full text link
    Removal of various toxic species from aqueous streams is of great importance. Sorption is one of the important remediation procedures as it involves the use of cheap and easily available materials. Also the advantage of regeneration of the sorbent involves the possibility of using novel sorbents. Nanosorbents are very important as the removal is based on the surface phenomena and this is greatly affected by surface charge and area. Functionalization has been very important to bring about the removal of metal ions with greater selectivity

    Functionalized Nanoparticles as Sorbents for Removal of Toxic Species

    Full text link
    Removal of various toxic species from aqueous streams is of great importance. Sorption is one of the important remediation procedures as it involves the use of cheap and easily available materials. Also the advantage of regeneration of the sorbent involves the possibility of using novel sorbents. Nanosorbents are very important as the removal is based on the surface phenomena and this is greatly affected by surface charge and area. Functionalization has been very important to bring about the removal of metal ions with greater selectivity

    Effect of Mo-Incorporation in the TiO<sub>2</sub> Lattice: A Mechanistic Basis for Photocatalytic Dye Degradation

    Full text link
    Photocatalytic activity of TiO<sub>2</sub> (anatase) is appreciably enhanced by substitutional doping of Mo in anatase lattice, in conjunction with the incorporation of nanostructured MoO<sub>3</sub> within the parent anatase lattice. The photocatalyst material was characterized in detail using X-ray diffraction, Raman spectroscopy, diffuse reflectance (DR-UV–Vis spectroscopy), X-ray photoelectron spectroscopy, and electron microscopy. Photocatalysis experiments were conducted using a model rhodamine-B (Rh–B) dye reaction using both UV and visible irradiation sources. The observed trends in the case of visible irradiative source can be summarized as follows: Mo-1 < Mo-2 < Mo-5 ≫ Mo-10. Attempts were made to isolate the structural factors that control photochemical behavior of these Mo–TiO<sub>2</sub> photocatalysts and to correlate photocatalytic activity with different structural aspects like oxidation state, band gap, surface species, etc. Mechanistic insights were acquired from ex situ <sup>1</sup>H NMR studies showing different intermediates and different probable routes for the Rh–B dye degradation with UV and visible radiations. The stable intermediates were formed by a direct oxidative fragmentation route, without any evidence of the initial deethylation route. The intermediates found were benzoic acid, different amines, diols, and certain acids (mostly formic and acetic acid). The adsorption of the Rh–B dye on the catalytic surface via the N-charge centers of the Rh–B was also observed
    corecore