7 research outputs found

    Fe(II)-based magnetogenic probes responsive to a chemical analyte by electron spin switch

    Full text link
    Cette thĂšse traite de molĂ©cules Ă  base de Fe(II) capables d’un passage de spin sous l’action d’un analyte en solution, utilisĂ©es dans le domaine de l’imagerie molĂ©culaire, notamment l’IRM (Imagerie par RĂ©sonance MagnĂ©tique). Depuis plusieurs annĂ©es, la communautĂ© scientifique autour de l’IRM a pris conscience de deux problĂ©matiques importantes : la faible sensibilitĂ© de l’IRM et la toxicitĂ© des agents de contrastes utilisĂ©s pour l’amĂ©liorer. Notre Ă©quipe rĂ©pond Ă  ces deux problĂ©matiques en dĂ©veloppant des sondes magnĂ©togĂšnes spĂ©cifiques Ă  un analyte biologique et supposĂ©es moins toxiques. Dans ce but, l’élaboration d’une mĂ©thodologie fiable permettant le greffage d’unitĂ©s sulfonates en pĂ©riphĂ©rie de complexes de coordination, et offrant un gain de solubilitĂ© et de compatibilitĂ© avec les milieux biologiques, a Ă©tĂ© rĂ©alisĂ©. Puis, elle a Ă©tĂ© appliquĂ©e Ă  un systĂšme de sonde dĂ©jĂ  Ă©tabli dans l’équipe afin d’augmenter son pH d’activation. En Ă©largissant ces unitĂ©s dĂ©coratives en pĂ©riphĂ©rie a d’autre fonctions, une sĂ©rie de dĂ©rivĂ©s a Ă©tĂ© synthĂ©tisĂ©, afin d’en extraire une tendance dans les performances d’activation du systĂšme en milieu acide.Dans le but de trouver un systĂšme de sonde s’activant Ă  pH physiologique, deux complexes ont Ă©tĂ© synthĂ©tisĂ©s, portant des motifs d’activation nouveaux. La caractĂ©risation poussĂ©e et l’étude d’activation de ces complexes ont offert de nouvelles donnĂ©es prĂ©cieuses Ă  Ă©quipe dans sa comprĂ©hension des concepts molĂ©culaires et leur optimisation.La biocompatibilitĂ© in cellulo des systĂšmes dĂ©veloppĂ©s a Ă©tĂ© explorĂ©e par l’étude de leur toxicitĂ© et de leur pĂ©nĂ©tration cellulaire. Un projet d’activation enzymatique dans l’estomac de rats, et premiĂšre tentative de preuve de concept in vivo de l’équipe, a pu ĂȘtre initiĂ©. Les manipulations prĂ©liminaires s’avĂšrent prometteuses pour la suite du projet.Enfin, l’écart de signal IRM des objets chimiques synthĂ©tisĂ©s, Ă©cart entre la sonde avant rencontre avec son analyte et aprĂšs, sont inĂ©dits dans le domaine. Ces rĂ©sultats sont encourageants pour le dĂ©veloppement d’une sonde suffisamment sensible pour permettre l’application Ă  des expĂ©riences d’imagerie molĂ©culaire de routine.This thesis deals with Fe(II) based molecules capable of a spin switch by interacting with an analyte in solution, which are used in the field of molecular imaging, in particular MRI (Magnetic Resonance Imaging). For several years now, the scientific community around MRI has become aware of two important issues: MRI’s low sensitivity and the toxicity of the contrast agents used to improve it. Our team responds to these two drawbacks by developing magnetogenic probes that are specific to a biological analyte and supposedly less toxic.For that purpose, the development of a reliable methodology allowing the incorporation of sulfonate units on the periphery of coordination complexes, offering a solubility and compatibility increase in biological media, was carried out. Then it was applied to a probe system already established in the team in order to increase its pH of activation. By expanding these peripheral decorative units to other functional groups, a series of derivatives have been synthesized, in order to extract a trend in the activation performance of the system in acidic conditions.With the aim of finding a system operating at physiological pH, two complexes were synthesized, carrying new activation motifs. The extensive characterization and activation studies of these complexes provided valuable data for the team in its understanding and optimization of the probe’s design.The in cellulo biocompatibility of the developed systems has been explored by studying their toxicity and their cellular absorption.An enzymatic activation project in the stomach of laboratory animals (rat), and the team's first in vivo proof of concept attempt, has been initiated. The preliminary manipulations are promising for the rest of the project. Finally, the difference in the MRI signal of the synthesized chemical objects, the difference between the probe before its encounter of the analyte and after, is unprecedented in the field. These results are encouraging for the development of a probe sensitive enough to allow application to routine molecular imaging experiments

    Unprecedented Relaxivity Gap in pH‐Responsive Fe III ‐Based MRI Probes

    Full text link
    International audienceTwo mononuclear ferric complexes are reported that respond to a pH change with a 27‐ and 71‐fold jump, respectively, in their capacity to accelerate the longitudinal relaxation rate of water‐hydrogen nuclei, and this starting from a negligible base value of only 0.06. This unprecedented performance bodes well for tackling the sensitivity issues hampering the development of Molecular MRI. The two chelates also excel in the fully reversible and fatigue‐less nature of this phenomenon. The structural reasons for this performance reside in the macrocyclic nature of the hexa‐dentate ligand, as well as the presence of a single pendant arm displaying a five‐membered lactam or carbamate which show (perturbed) p K a values of 3.5 in the context of this N6 N5O1 coordination motif

    Tris‐dipicolinate lanthanide complexes: influence of the second hydration sphere on the solid‐state luminescence properties.

    Full text link
    International audienceA series of tris-dipicolinate europium complexes featuring different complexes has been prepared, and their photophysical study has been performed in the solid state highlighting the crucial role of second sphere water molecules. The non-radiative deactivation constant (k nr ) varies significantly with the number of interstitial water molecules and their distance to the europium emitting center. The complex (NBu 4 ) 3 [Eu(DPA) 3 ], featuring the most lipophilic cation, exhibits excellent solubility and remarkable photophysical properties in aprotic solvent

    Le tris-dipicolinate de lanthanide : un complexe Ă  tout faire ?

    Full text link
    National audienceLanthanide tris-dipicolinate complexes form an isostructural family that can be easily prepared and crystallized. They allow the study of a wide range of physico-chemical properties from material sciences (crystal engineering, luminescence, nonlinear optics) to the interface of structural biology and the study of supramolecular interactions with biomolecules in solution by paramagnetic NMR.Les complexes tris-dipicolinate de lanthanide forment une famille de composĂ©s extrĂȘmement simples Ă  prĂ©parer et Ă  cristalliser. Ils permettent d'Ă©tudier une trĂšs large gamme de propriĂ©tĂ©s physico-chimiques, depuis les sciences des matĂ©riaux (ingĂ©nierie cristalline, luminescence, optique non linĂ©aire) jusqu'Ă  l'interface de la biologie structurale et l'Ă©tude en solution des interactions supramolĂ©culaires avec des biomolĂ©cules par RMN paramagnĂ©tique

    Le tris-dipicolinate de lanthanide : un complexe Ă  tout faire ?

    Full text link
    National audienceLanthanide tris-dipicolinate complexes form an isostructural family that can be easily prepared and crystallized. They allow the study of a wide range of physico-chemical properties from material sciences (crystal engineering, luminescence, nonlinear optics) to the interface of structural biology and the study of supramolecular interactions with biomolecules in solution by paramagnetic NMR.Les complexes tris-dipicolinate de lanthanide forment une famille de composĂ©s extrĂȘmement simples Ă  prĂ©parer et Ă  cristalliser. Ils permettent d'Ă©tudier une trĂšs large gamme de propriĂ©tĂ©s physico-chimiques, depuis les sciences des matĂ©riaux (ingĂ©nierie cristalline, luminescence, optique non linĂ©aire) jusqu'Ă  l'interface de la biologie structurale et l'Ă©tude en solution des interactions supramolĂ©culaires avec des biomolĂ©cules par RMN paramagnĂ©tique
    corecore