1,158 research outputs found

    Comparison of High-Intensity vs. High-Volume Resistance Training on the BDNF Response to Exercise

    Get PDF
    This study compared the acute and chronic response of circulating plasma brain-derived neurotrophic factor (BDNF) to high-intensity low-volume (HI) and low-intensity high volume (HV) resistance training. Twenty experienced resistance-trained men (23.5 ± 2.6 y, 1.79 ± 0.05 m, 75.7 ± 13.8 kg) volunteered for this study. Before the resistance training program (PRE), participants performed an acute bout of exercise using either the HI [3-5 reps; 90% of one repetition maximum (1RM)] or HV (10–12 reps; 70% 1RM) training paradigm. The acute exercise protocol was repeated after 7 wk of training (POST). Blood samples were obtained at rest (BL), immediately (IP), 30 min (30P), and 60 min (60P) post exercise at PRE and POST. A three-way repeated measure ANOVA was used to analyze acute changes in BDNF concentrations during HI and HV resistance exercise and the effect of 7 wk of training. No training × time × group interaction in BDNF was noted (P = 0.994). Significant main effects for training (P = 0.050) and time (P \u3c 0.001) in BDNF were observed. Significant elevations in BDNF concentrations were seen from BL at IP (P = 0.001), 30P (P \u3c 0.001), and 60P (P \u3c 0.001) in both HI and HV combined during PRE and POST. BDNF concentrations were also observed to increase from PRE to POST when collapsed across groups and time. No significant group × training interaction (P = 0.342), training (P = 0.105), or group (P = 0.238) effect were noted in the BDNF area under the curve response. Results indicate that BDNF concentrations are increased after an acute bout of resistance exercise, regardless of training paradigm, and are further increased during a 7-wk training program in experienced lifters

    Nutrient synergy: definition, evidence, and future directions

    Get PDF
    Nutrient synergy refers to the concept that the combined effects of two or more nutrients working together have a greater physiological impact on the body than when each nutrient is consumed individually. While nutrition science traditionally focuses on isolating single nutrients to study their effects, it is recognized that nutrients interact in complex ways, and their combined consumption can lead to additive effects. Additionally, the Dietary Reference Intakes (DRIs) provide guidelines to prevent nutrient deficiencies and excessive intake but are not designed to assess the potential synergistic effects of consuming nutrients together. Even the term synergy is often applied in different manners depending on the scientific discipline. Considering these issues, the aim of this narrative review is to investigate the potential health benefits of consuming different nutrients and nutrient supplements in combination, a concept we define as nutrient synergy, which has gained considerable attention for its impact on overall well-being. We will examine how nutrient synergy affects major bodily systems, influencing systemic health. Additionally, we will address the challenges associated with promoting and conducting research on this topic, while proposing potential solutions to enhance the quality and quantity of scientific literature on nutrient synergy

    Mediators of Monocyte Migration in Response to Recovery Modalities following Resistance Exercise

    Get PDF
    Mediators of monocyte migration, complement receptor-3 (CR3), and chemokine ligand-4 (CCL4) were measured in response to recovery modalities following resistance exercise. Thirty resistance-trained men (23.1 +/- 2.9 y; 175.2 +/- 7.1 cm; 82.1 +/- 8.4 kg) were given neuromuscular electric stimulation (NMES), cold water immersion (CWI), or control (CON) treatments immediately following resistance exercise. Blood samples were obtained preexercise (PRE), immediately (IP), 30 minutes (30 P), 24 hours (24 H), and 48 hours (48 H) after exercise for measurement of circulating CCL4 and CR3 expression on CD14+ monocytes, by assay and flow cytometry. Circulating CCL4 showed no consistent changes. Inferential analysis indicated that CR3 expression was likely greater in CON at 30 P than NMES (90.0%) or CWI (86.8%). NMES was likely lower than CON at 24H (92.9%) and very likely lower at 48H (98.7%). Expression of CR3 following CWI was very likely greater than CON (96.5%) at 24H. The proportion of CR3+ monocytes was likely greater following CWI than NMES (85.8%) or CON (85.2%) at 24 H. The change in proportion of CR3+ monocytes was likely (86.4%) greater following NMES than CON from IP to 30 P. The increased expression of CR3 and increased proportion of CR3+ monocytes following CWI at 24 H indicate a potentially improved ability for monocyte adhesion to the endothelium, possibly improving phagocytosis of damaged tissues

    Zero Modes for the D=11 Membrane and Five-Brane

    Get PDF
    There exist extremal p-brane solutions of D ⁣= ⁣11D\!=\!11 supergravity for p=2~and~5. In this paper we investigate the zero modes of the membrane and the five-brane solutions as a first step toward understanding the full quantum theory of these objects. It is found that both solutions possess the correct number of normalizable zero modes dictated by supersymmetry.Comment: Minor typos corrected, one reference added, agrees with published version. 9 RevTeX pages, 1 figure include

    High-intensity interval training and beta-hydroxy-beta-methylbutyric free acid improves aerobic power and metabolic thresholds

    Get PDF
    Background: Previous research combining Calcium beta-hydroxy-beta-methylbutyrate (CaHMB) and running high-intensity interval training (HIIT) have shown positive effects on aerobic performance measures. The purpose of this study was to examine the effect of beta-hydroxy-beta-methylbutyric free acid (HMBFA) and cycle ergometry HIIT on maximal oxygen consumption (VO(2)peak), ventilatory threshold (VT), respiratory compensation point (RCP) and time to exhaustion (T-max) in college-aged men and women. Methods: Thirty-four healthy men and women (Age: 22.7 +/- 3.1 yrs; VO(2)peak: 39.3 +/- 5.0 ml center dot kg(-1)center dot min(-1)) volunteered to participate in this double-blind, placebo-controlled design study. All participants completed a series of tests prior to and following treatment. A peak oxygen consumption test was performed on a cycle ergometer to assess VO(2)peak, Tmax, VT, and RCP. Twenty-six participants were randomly assigned into either a placebo (PLA-HIIT) or 3 g per day of HMBFA (BetaTor (TM) ) (HMBFA-HIIT) group. Eight participants served as controls (CTL). Participants in the HIIT groups completed 12 HIIT (80-120% maximal workload) exercise sessions consisting of 5-6 bouts of a 2: 1 minute cycling work to rest ratio protocol over a four-week period. Body composition was measured with dual energy x-ray absorptiometry (DEXA). Outcomes were assessed by ANCOVA with posttest means adjusted for pretest differences. Results: The HMBFA-HIIT intervention showed significant (p \u3c 0.05) gains in VO(2)peak, and VT, versus the CTL and PLA-HIIT group. Both PLA-HIIT and HMBFA-HIIT treatment groups demonstrated significant (p \u3c 0.05) improvement over CTL for Tmax, and RCP with no significant difference between the treatment groups. There were no significant differences observed for any measures of body composition. An independent-samples t-test confirmed that there were no significant differences between the training volumes for the PLA-HIIT and HMBFA-HIIT groups. Conclusions: Our findings support the use of HIIT in combination with HMBFA to improve aerobic fitness in college age men and women. These data suggest that the addition of HMBFA supplementation may result in greater changes in VO(2)peak and VT than HIIT alone

    High-intensity interval training and beta-hydroxy-beta-methylbutyric free acid improves aerobic power and metabolic thresholds

    Get PDF
    Background: Previous research combining Calcium beta-hydroxy-beta-methylbutyrate (CaHMB) and running high-intensity interval training (HIIT) have shown positive effects on aerobic performance measures. The purpose of this study was to examine the effect of beta-hydroxy-beta-methylbutyric free acid (HMBFA) and cycle ergometry HIIT on maximal oxygen consumption (VO(2)peak), ventilatory threshold (VT), respiratory compensation point (RCP) and time to exhaustion (T-max) in college-aged men and women. Methods: Thirty-four healthy men and women (Age: 22.7 +/- 3.1 yrs; VO(2)peak: 39.3 +/- 5.0 ml center dot kg(-1)center dot min(-1)) volunteered to participate in this double-blind, placebo-controlled design study. All participants completed a series of tests prior to and following treatment. A peak oxygen consumption test was performed on a cycle ergometer to assess VO(2)peak, Tmax, VT, and RCP. Twenty-six participants were randomly assigned into either a placebo (PLA-HIIT) or 3 g per day of HMBFA (BetaTor (TM) ) (HMBFA-HIIT) group. Eight participants served as controls (CTL). Participants in the HIIT groups completed 12 HIIT (80-120% maximal workload) exercise sessions consisting of 5-6 bouts of a 2: 1 minute cycling work to rest ratio protocol over a four-week period. Body composition was measured with dual energy x-ray absorptiometry (DEXA). Outcomes were assessed by ANCOVA with posttest means adjusted for pretest differences. Results: The HMBFA-HIIT intervention showed significant (p \u3c 0.05) gains in VO(2)peak, and VT, versus the CTL and PLA-HIIT group. Both PLA-HIIT and HMBFA-HIIT treatment groups demonstrated significant (p \u3c 0.05) improvement over CTL for Tmax, and RCP with no significant difference between the treatment groups. There were no significant differences observed for any measures of body composition. An independent-samples t-test confirmed that there were no significant differences between the training volumes for the PLA-HIIT and HMBFA-HIIT groups. Conclusions: Our findings support the use of HIIT in combination with HMBFA to improve aerobic fitness in college age men and women. These data suggest that the addition of HMBFA supplementation may result in greater changes in VO(2)peak and VT than HIIT alone

    Effects of beta-Hydroxy-beta-methylbutyrate Free Acid Ingestion and Resistance Exercise on the Acute Endocrine Response

    Get PDF
    Objective. To examine the endocrine response to a bout of heavy resistance exercise following acute beta-hydroxy-beta-methylbutyrate free acid (HMB-FA) ingestion. Design. Twenty resistance trained men were randomized and consumed either 1 g of HMB-FA (BetaTor) or placebo (PL) 30 min prior to performing an acute heavy resistance exercise protocol. Blood was obtained before (PRE), immediately after (IP), and 30 min after exercise (30P). Circulating concentrations of testosterone, growth hormone (GH), insulin-like growth factor (IGF-1), and insulin were assayed. Data were analyzed with a repeated measures ANOVA and area under the curve (AUC) was analyzed by the trapezoidal rule. Results. The resistance exercise protocol resulted in significant elevations from PRE in testosterone (P \u3c 0.01), GH (P \u3c 0.01), and insulin (P = 0.05) at IP, with GH (P \u3c 0.01) and insulin (P \u3c 0.01) remaining elevated at 30P. A significant interaction was noted between groups in the plasma GH response at IP, which was significantly higher following HMB-FA compared to PL (P \u3c 0.01). AUC analysis revealed an elevated GH and IGF-1 response in the HMB-FA group compared to PL. Conclusion. HMB-FA prior to resistance exercise augments the GH response to high volume resistance exercise compared to PL. These findings provide further support for the potential anabolic benefits associated with HMB supplementation

    Peripheral Determinants of Oxygen Utilization in Heart Failure With Preserved Ejection Fraction

    Get PDF
    The aim of this study was to determine the arteriovenous oxygen content difference (ΔAVO2) in adult subjects with and without heart failure with preserved ejection fraction (HFpEF) during systemic and forearm exercise. Subjects with HFpEF had reduced ΔAVO2. Forearm diffusional conductance for oxygen, a lumped conductance parameter that incorporates all impediments to the movement of oxygen from red blood cells in skeletal muscle capillaries into the mitochondria within myocytes, was estimated. Forearm diffusional conductance for oxygen was not different among adults with HFpEF, those with hypertension, and healthy control subjects; therefore, diffusional conductance cannot explain the reduced forearm ΔAVO2. Instead, adiposity was strongly associated with ΔAVO2, suggesting an active role for adipose tissue in reducing exercise capacity in patients with HFpEF

    Excess Post-Exercise Oxygen Consumption (Epoc) Following Multiple Effort Sprint and Moderate Aerobic Exercise

    Get PDF
    The purpose of this study was to investigate the effects of 30-second all-out sprint interval exercise (SIE) vs. moderate aerobic exercise (MA) on excess post-exercise oxygen consumption (EPOC). Six recreationally-trained males (age=23.3 +/- 1.4 yrs, weight=81.8 +/- 9.9 kg, height=180.8 +/- 6.3 cm) completed a sprint interval exercise session consisting of three repeated 30-second Wingate cycling tests separated by four minutes (duration similar to 11minutes) as well as a moderate aerobic exercise session consisting of 30-minute cycling at 60% heart rate reserve (HRR) in a random counterbalanced design. Baseline oxygen consumption (VO2) was determined by an average VO2 from the final five minutes of a 30-minute supine rest period prior to each trial. Following each protocol, VO2 was measured for 30 minutes or until baseline measures were reached. EPOC was determined by subtracting baseline VO2 from post-exercise VO2 measurements. Energy expenditure (kJ) was determined by multiplying kJ per liter of oxygen by the average VO2 during recovery. EPOC values were significantly higher in SIE (7.5 +/- 1.3 L) than MA (1.8 +/- 0.7 L). SIE produced a higher recovery caloric expenditure (156.9 kJ) compared to MA (41.0 kJ) and remained significantly elevated (p=.024) over resting levels during the entire recovery period (30 minutes) compared to MA (6 minutes, p=.003). The energy required to recover from three repeated maximal effort 30-second Wingate cycling tests was greater than 30 minutes of moderate aerobic exercise. Future studies should examine the chronic effects of maximal effort sprint training protocol on cardiovascular fitness and body composition
    corecore