117 research outputs found
Mega-phylogeny approach for comparative biology: an alternative to supertree and supermatrix approaches
Abstract Background Biology has increasingly recognized the necessity to build and utilize larger phylogenies to address broad evolutionary questions. Large phylogenies have facilitated the discovery of differential rates of molecular evolution between trees and herbs. They have helped us understand the diversification patterns of mammals as well as the patterns of seed evolution. In addition to these broad evolutionary questions there is increasing awareness of the importance of large phylogenies for addressing conservation issues such as biodiversity hotspots and response to global change. Two major classes of methods have been employed to accomplish the large tree-building task: supertrees and supermatrices. Although these methods are continually being developed, they have yet to be made fully accessible to comparative biologists making extremely large trees rare. Results Here we describe and demonstrate a modified supermatrix method termed mega-phylogeny that uses databased sequences as well as taxonomic hierarchies to make extremely large trees with denser matrices than supermatrices. The two major challenges facing large-scale supermatrix phylogenetics are assembling large data matrices from databases and reconstructing trees from those datasets. The mega-phylogeny approach addresses the former as the latter is accomplished by employing recently developed methods that have greatly reduced the run time of large phylogeny construction. We present an algorithm that requires relatively little human intervention. The implemented algorithm is demonstrated with a dataset and phylogeny for Asterales (within Campanulidae) containing 4954 species and 12,033 sites and an rbcL matrix for green plants (Viridiplantae) with 13,533 species and 1,401 sites. Conclusion By examining much larger phylogenies, patterns emerge that were otherwise unseen. The phylogeny of Viridiplantae successfully reconstructs major relationships of vascular plants that previously required many more genes. These demonstrations underscore the importance of using large phylogenies to uncover important evolutionary patterns and we present a fast and simple method for constructing these phylogenies.</p
A Southern Hemisphere origin for campanulid angiosperms, with traces of the break-up of Gondwana
Background
New powerful biogeographic methods have focused attention on long-standing hypotheses regarding the influence of the break-up of Gondwana on the biogeography of Southern Hemisphere plant groups. Studies to date have often concluded that these groups are too young to have been influenced by these ancient continental movements. Here we examine a much larger and older angiosperm clade, the Campanulidae, and infer its biogeographic history by combining Bayesian divergence time information with a likelihood-based biogeographic model focused on the Gondwanan landmasses. Results
Our analyses imply that campanulids likely originated in the middle Albian (~105 Ma), and that a substantial portion of the early evolutionary history of campanulids took place in the Southern Hemisphere, despite their greater species richness in the Northern Hemisphere today. We also discovered several disjunctions that show biogeographic and temporal correspondence with the break-up of Gondwana. Conclusions
While it is possible to discern traces of the break-up of Gondwana in clades that are old enough, it will generally be difficult to be confident in continental movement as the prime cause of geographic disjunctions. This follows from the need for the geographic disjunction, the inferred biogeographic scenario, and the dating of the lineage splitting events to be consistent with the causal hypothesis
Hemisphere-scale differences in conifer evolutionary dynamics
Fundamental differences in the distribution of oceans and landmasses in the Northern and Southern Hemispheres potentially impact patterns of biological diversity in the two areas. The evolutionary history of conifers provides an opportunity to explore these dynamics, because the majority of extant conifer species belong to lineages that have been broadly confined to the Northern or Southern Hemisphere during the Cenozoic. Incorporating genetic information with a critical review of fossil evidence, we developed an age-calibrated phylogeny sampling ∼80% of living conifer species. Most extant conifer species diverged recently during the Neogene within clades that generally were established during the later Mesozoic, but lineages that diversified mainly in the Southern Hemisphere show a significantly older distribution of divergence ages than their counterparts in the Northern Hemisphere. Our tree topology and divergence times also are best fit by diversification models in which Northern Hemisphere conifer lineages have higher rates of species turnover than Southern Hemisphere lineages. The abundance of recent divergences in northern clades may reflect complex patterns of migration and range shifts during climatic cycles over the later Neogene leading to elevated rates of speciation and extinction, whereas the scattered persistence of mild, wetter habitats in the Southern Hemisphere may have favored the survival of older lineages
Recommended from our members
On the Relationship between Pollen Size and Genome Size
Here we test whether genome size is a predictor of pollen size. If it were, inferences of ancient genome size would be possible using the abundant paleo-palynolgical record. We performed regression analyses across 464 species of pollen width and genome size. We found a significant positive trend. However, regression analysis using phylogentically independent contrasts did not support the correlated evolution of these traits. Instead, a large split between angiosperms and gymnosperms for both pollen width and genome size was revealed. Sister taxa were not more likely to show a positive contrast when compared to deeper nodes. However, significantly more congeneric species had a positive trend than expected by chance. These results may reflect the strong selection pressure for pollen to be small. Also, because pollen grains are not metabolically active when measured, their biology is different than other cells which have been shown to be strongly related to genome size, such as guard cells. Our findings contrast with previously published research. It was our hope that pollen size could be used as a proxy for inferring the genome size of ancient species. However, our results suggest pollen is not a good candidate for such endeavors.Peer Reviewe
Intellectual disability associated with a homozygous missense mutation in THOC6
BACKGROUND: We recently described a novel autosomal recessive neurodevelopmental disorder with intellectual disability in four patients from two related Hutterite families. Identity-by-descent mapping localized the gene to a 5.1 Mb region at chromosome 16p13.3 containing more than 170 known or predicted genes. The objective of this study was to identify the causative gene for this rare disorder. METHODS AND RESULTS: Candidate gene sequencing followed by exome sequencing identified a homozygous missense mutation p.Gly46Arg, in THOC6. No other potentially causative coding variants were present within the critical region on chromosome 16. THOC6 is a member of the THO/TREX complex which is involved in coordinating mRNA processing with mRNA export from the nucleus. In situ hybridization showed that thoc6 is highly expressed in the midbrain and eyes. Cellular localization studies demonstrated that wild-type THOC6 is present within the nucleus as is the case for other THO complex proteins. However, mutant THOC6 was predominantly localized to the cytoplasm, suggesting that the mutant protein is unable to carry out its normal function. siRNA knockdown of THOC6 revealed increased apoptosis in cultured cells. CONCLUSION: Our findings associate a missense mutation in THOC6 with intellectual disability, suggesting the THO/TREX complex plays an important role in neurodevelopment
Exome Sequencing as a Diagnostic Tool for Pediatric-Onset Ataxia
Ataxia demonstrates substantial phenotypic and genetic heterogeneity. We set out to determine the diagnostic yield of exome sequencing in pediatric patients with ataxia without a molecular diagnosis after standard-of-care assessment in Canada. FORGE (Finding Of Rare disease GEnes) Canada is a nation-wide project focused on identifying novel disease genes for rare pediatric diseases using whole-exome sequencing. We retrospectively selected all FORGE Canada projects that included cerebellar ataxia as a feature. We identified 28 such families and a molecular diagnosis was made in 13; a success rate of 46%. In 11 families, we identified mutations in genes associated with known neurological syndromes and in two we identified novel disease genes. Exome analysis of sib pairs and/or patients born to consanguineous parents was more likely to be successful (9/13) than simplex cases (4/15). Our data suggest that exome sequencing is an effective first line test for pediatric patients with ataxia where a specific single gene is not immediately suspected to be causative. © 2013 The Authors. *Human Mutation published by Wiley Periodicals, Inc
Functional distinctiveness of major plant lineages
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106060/1/jec12208.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/106060/2/jec12208-sup-0001-Supp_Info.pd
Combination of ciprofloxacin/celecoxib as a novel therapeutic strategy for ALS
Objective: This study aimed to evaluate the safety and tolerability of a fixed-dose co-formulation of ciprofloxacin and celecoxib (PrimeC) in patients with amyotrophic lateral sclerosis (ALS), and to examine its effects on disease progression and ALS-related biomarkers. Methods: In this proof of concept, open-label, phase IIa study of PrimeC in 15 patients with ALS, participants were administered PrimeC thrice daily for 12 months. The primary endpoints were safety and tolerability. Exploratory endpoints included disease progression outcomes such as forced vital capacity, revised ALS functional rating scale, and effect on algorithm-predicted survival. In addition, indications of a biological effect were assessed by selected biomarker analyses, including TDP-43 and LC3 levels in neuron-derived exosomes (NDEs), and serum neurofilaments. Results: Four participants experienced adverse events (AEs) related to the study drug. None of these AEs were unexpected, and most were mild or moderate (69%). Additionally, no serious AEs were related to the study drug. One participant tested positive for COVID-19 and recovered without complications, and no other abnormal laboratory investigations were found. Participants’ survival compared to their predictions showed no safety concerns. Biomarker analyses demonstrated significant changes associated with PrimeC in neural-derived exosomal TDP-43 levels and levels of LC3, a key autophagy marker. Interpretation: This study supports the safety and tolerability of PrimeC in ALS. Biomarker analyses suggest early evidence of a biological effect. A placebo-controlled trial is required to disentangle the biomarker results from natural progression and to evaluate the efficacy of PrimeC for the treatment of ALS. Summary for social media if published Twitter handles: @NeurosenseT, @ShiranZimri •What is the current knowledge on the topic? ALS is a severe neurodegenerative disease, causing death within 2–5 years from diagnosis. To date there is no effective treatment to halt or significantly delay disease progression. •What question did this study address? This study assessed the safety, tolerability and exploratory efficacy of PrimeC, a fixed dose co-formulation of ciprofloxacin and celecoxib in the ALS population. •What does this study add to our knowledge? This study supports the safety and tolerability of PrimeC in ALS, and exploratory biomarker analyses suggest early insight for disease related-alteration. •How might this potentially impact the practice of neurology? These results set the stage for a larger, placebo-controlled study to examine the efficacy of PrimeC, with the potential to become a new drug candidate for ALS
Survey of Period Variations of Superhumps in SU UMa-Type Dwarf Novae
We systematically surveyed period variations of superhumps in SU UMa-type
dwarf novae based on newly obtained data and past publications. In many
systems, the evolution of superhump period are found to be composed of three
distinct stages: early evolutionary stage with a longer superhump period,
middle stage with systematically varying periods, final stage with a shorter,
stable superhump period. During the middle stage, many systems with superhump
periods less than 0.08 d show positive period derivatives. Contrary to the
earlier claim, we found no clear evidence for variation of period derivatives
between superoutburst of the same object. We present an interpretation that the
lengthening of the superhump period is a result of outward propagation of the
eccentricity wave and is limited by the radius near the tidal truncation. We
interpret that late stage superhumps are rejuvenized excitation of 3:1
resonance when the superhumps in the outer disk is effectively quenched. Many
of WZ Sge-type dwarf novae showed long-enduring superhumps during the
post-superoutburst stage having periods longer than those during the main
superoutburst. The period derivatives in WZ Sge-type dwarf novae are found to
be strongly correlated with the fractional superhump excess, or consequently,
mass ratio. WZ Sge-type dwarf novae with a long-lasting rebrightening or with
multiple rebrightenings tend to have smaller period derivatives and are
excellent candidate for the systems around or after the period minimum of
evolution of cataclysmic variables (abridged).Comment: 239 pages, 225 figures, PASJ accepte
- …