3 research outputs found
Abcc8 (sulfonylurea receptor-1) knockout mice exhibit reduced axonal injury, cytotoxic edema and cognitive dysfunction vs. wild-type in a cecal ligation and puncture model of sepsis
Abstract Sepsis-associated brain injury (SABI) is characterized by an acute deterioration of mental status resulting in cognitive impairment and acquisition of new and persistent functional limitations in sepsis survivors. Previously, we reported that septic mice had evidence of axonal injury, robust microglial activation, and cytotoxic edema in the cerebral cortex, thalamus, and hippocampus in the absence of blood–brain barrier disruption. A key conceptual advance in the field was identification of sulfonylurea receptor 1 (SUR1), a member of the adenosine triphosphate (ATP)-binding cassette protein superfamily, that associates with the transient receptor potential melastatin 4 (TRPM4) cation channel to play a crucial role in cerebral edema development. Therefore, we hypothesized that knockout (KO) of Abcc8 (Sur1 gene) is associated with a decrease in microglial activation, cerebral edema, and improved neurobehavioral outcomes in a murine cecal ligation and puncture (CLP) model of sepsis. Sepsis was induced in 4–6-week-old Abcc8 KO and wild-type (WT) littermate control male mice by CLP. We used immunohistochemistry to define neuropathology and microglial activation along with parallel studies using magnetic resonance imaging, focusing on cerebral edema on days 1 and 4 after CLP. Abcc8 KO mice exhibited a decrease in axonal injury and cytotoxic edema vs. WT on day 1. Abcc8 KO mice also had decreased microglial activation in the cerebral cortex vs. WT. These findings were associated with improved spatial memory on days 7–8 after CLP. Our study challenges a key concept in sepsis and suggests that brain injury may not occur merely as an extension of systemic inflammation. We advance the field further and demonstrate that deletion of the SUR1 gene ameliorates CNS pathobiology in sepsis including edema, axonal injury, neuroinflammation, and behavioral deficits. Benefits conferred by Abcc8 KO in the murine CLP model warrant studies of pharmacological Abcc8 inhibition as a new potential therapeutic strategy for SABI
Choice of Whole Blood versus Lactated Ringer\u27s Resuscitation Modifies the Relationship between Blood Pressure Target and Functional Outcome after Traumatic Brain Injury plus Hemorrhagic Shock in Mice
Civilian traumatic brain injury (TBI) guidelines recommend resuscitation of patients with hypotensive TBI with crystalloids. Increasing evidence, however, suggests that whole blood (WB) resuscitation may improve physiological and survival outcomes at lower resuscitation volumes, and potentially at a lower mean arterial blood pressure (MAP), than crystalloid after TBI and hemorrhagic shock (HS). The objective of this study was to assess whether WB resuscitation with two different MAP targets improved behavioral and histological outcomes compared with lactated Ringer\u27s (LR) in a mouse model of TBI+HS. Anesthetized mice ( = 40) underwent controlled cortical impact (CCI) followed by HS (MAP = 25-27 mm Hg; 25 min) and were randomized to five groups for a 90 min resuscitation: LR with MAP target of 70 mm Hg (LR), LR, WB, WB, and monitored sham. Mice received a 20 mL/kg bolus of LR or autologous WB followed by LR boluses (10 mL/kg) every 5 min for MAP below target. Shed blood was reinfused after 90 min. Morris Water Maze testing was performed on days 14-20 post-injury. Mice were euthanized (21 d) to assess contusion and total brain volumes. Latency to find the hidden platform was greater versus sham for LR ( \u3c 0.002) and WB ( \u3c 0.007) but not LR or WB. The WB resuscitation did not reduce contusion volume or brain tissue loss. The WB targeting a MAP of 60 mm Hg did not compromise function versus a 70 mm Hg target after CCI+HS, but further reduced fluid requirements ( 0.03). Using LR, higher achieved MAP was associated with better behavioral performance (rho = -0.67,  0.028). Use of WB may allow lower MAP targets without compromising functional outcome, which could facilitate pre-hospital TBI resuscitation