69 research outputs found
Intellectual disability associated with a homozygous missense mutation in THOC6
BACKGROUND: We recently described a novel autosomal recessive neurodevelopmental disorder with intellectual disability in four patients from two related Hutterite families. Identity-by-descent mapping localized the gene to a 5.1 Mb region at chromosome 16p13.3 containing more than 170 known or predicted genes. The objective of this study was to identify the causative gene for this rare disorder. METHODS AND RESULTS: Candidate gene sequencing followed by exome sequencing identified a homozygous missense mutation p.Gly46Arg, in THOC6. No other potentially causative coding variants were present within the critical region on chromosome 16. THOC6 is a member of the THO/TREX complex which is involved in coordinating mRNA processing with mRNA export from the nucleus. In situ hybridization showed that thoc6 is highly expressed in the midbrain and eyes. Cellular localization studies demonstrated that wild-type THOC6 is present within the nucleus as is the case for other THO complex proteins. However, mutant THOC6 was predominantly localized to the cytoplasm, suggesting that the mutant protein is unable to carry out its normal function. siRNA knockdown of THOC6 revealed increased apoptosis in cultured cells. CONCLUSION: Our findings associate a missense mutation in THOC6 with intellectual disability, suggesting the THO/TREX complex plays an important role in neurodevelopment
Exome Sequencing as a Diagnostic Tool for Pediatric-Onset Ataxia
Ataxia demonstrates substantial phenotypic and genetic heterogeneity. We set out to determine the diagnostic yield of exome sequencing in pediatric patients with ataxia without a molecular diagnosis after standard-of-care assessment in Canada. FORGE (Finding Of Rare disease GEnes) Canada is a nation-wide project focused on identifying novel disease genes for rare pediatric diseases using whole-exome sequencing. We retrospectively selected all FORGE Canada projects that included cerebellar ataxia as a feature. We identified 28 such families and a molecular diagnosis was made in 13; a success rate of 46%. In 11 families, we identified mutations in genes associated with known neurological syndromes and in two we identified novel disease genes. Exome analysis of sib pairs and/or patients born to consanguineous parents was more likely to be successful (9/13) than simplex cases (4/15). Our data suggest that exome sequencing is an effective first line test for pediatric patients with ataxia where a specific single gene is not immediately suspected to be causative. © 2013 The Authors. *Human Mutation published by Wiley Periodicals, Inc
Integrative GWAS and co-localisation analysis suggests novel genes associated with age-related multimorbidity
Abstract Advancing age is the greatest risk factor for developing multiple age-related diseases. Therapeutic approaches targeting the underlying pathways of ageing, rather than individual diseases, may be an effective way to treat and prevent age-related morbidity while reducing the burden of polypharmacy. We harness the Open Targets Genetics Portal to perform a systematic analysis of nearly 1,400 genome-wide association studies (GWAS) mapped to 34 age-related diseases and traits, identifying genetic signals that are shared between two or more of these traits. Using locus-to-gene (L2G) mapping, we identify 995 targets with shared genetic links to age-related diseases and traits, which are enriched in mechanisms of ageing and include known ageing and longevity-related genes. Of these 995 genes, 128 are the target of an approved or investigational drug, 526 have experimental evidence of binding pockets or are predicted to be tractable, and 341 have no existing tractability evidence, representing underexplored genes which may reveal novel biological insights and therapeutic opportunities. We present these candidate targets for exploration and prioritisation in a web application
Mapping interindividual dynamics of innate immune response at single-cell resolution
Common genetic variants across individuals modulate the cellular response to pathogens and are implicated in diverse immune pathologies, yet how they dynamically alter the response upon infection is not well understood. Here, we triggered antiviral responses in human fibroblasts from 68 healthy donors, and profiled tens of thousands of cells using single-cell RNA-sequencing. We developed GASPACHO (GAuSsian Processes for Association mapping leveraging Cell HeterOgeneity), a statistical approach designed to identify nonlinear dynamic genetic effects across transcriptional trajectories of cells. This approach identified 1,275 expression quantitative trait loci (local false discovery rate 10%) that manifested during the responses, many of which were colocalized with susceptibility loci identified by genome-wide association studies of infectious and autoimmune diseases, including the OAS1 splicing quantitative trait locus in a COVID-19 susceptibility locus. In summary, our analytical approach provides a unique framework for delineation of the genetic variants that shape a wide spectrum of transcriptional responses at single-cell resolution
Artificial intelligence for dementia genetics and omics
Genetics and omics studies of Alzheimer's disease and other dementia subtypes enhance our understanding of underlying mechanisms and pathways that can be targeted. We identified key remaining challenges: First, can we enhance genetic studies to address missing heritability? Can we identify reproducible omics signatures that differentiate between dementia subtypes? Can high-dimensional omics data identify improved biomarkers? How can genetics inform our understanding of causal status of dementia risk factors? And which biological processes are altered by dementia-related genetic variation? Artificial intelligence (AI) and machine learning approaches give us powerful new tools in helping us to tackle these challenges, and we review possible solutions and examples of best practice. However, their limitations also need to be considered, as well as the need for coordinated multidisciplinary research and diverse deeply phenotyped cohorts. Ultimately AI approaches improve our ability to interrogate genetics and omics data for precision dementia medicine
A map of transcriptional heterogeneity and regulatory variation in human microglia.
Microglia, the tissue-resident macrophages of the central nervous system (CNS), play critical roles in immune defense, development and homeostasis. However, isolating microglia from humans in large numbers is challenging. Here, we profiled gene expression variation in primary human microglia isolated from 141 patients undergoing neurosurgery. Using single-cell and bulk RNA sequencing, we identify how age, sex and clinical pathology influence microglia gene expression and which genetic variants have microglia-specific functions using expression quantitative trait loci (eQTL) mapping. We follow up one of our findings using a human induced pluripotent stem cell-based macrophage model to fine-map a candidate causal variant for Alzheimer's disease at the BIN1 locus. Our study provides a population-scale transcriptional map of a critically important cell for human CNS development and disease
- …