22 research outputs found

    Robust Convergence of Power Flow using Tx Stepping Method with Equivalent Circuit Formulation

    Full text link
    Robust solving of critical large power flow cases (with 50k or greater buses) forms the backbone of planning and operation of any large connected power grid. At present, reliable convergence with applications of existing power flow tools to large power systems is contingent upon a good initial guess for the system state. To enable robust convergence for large scale systems starting with an arbitrary initial guess, we extend our equivalent circuit formulation for power flow analysis to include a novel continuation method based on transmission line (Tx) stepping. While various continuation methods have been proposed for use with the traditional PQV power flow formulation, these methods have either failed to completely solve the problem or have resulted in convergence to a low voltage solution. The proposed Tx Stepping method in this paper demonstrates robust convergence to the high voltage solution from an arbitrary initial guess. Example systems, including 75k+ bus test cases representing different loading and operating conditions for Eastern Interconnection of the U.S. power grid, are solved from arbitrary initial guesses.Interconnection of the U.S. power grid, are solved from arbitrary initial guesses

    Improving Power Flow Robustness via Circuit Simulation Methods

    Full text link
    Recent advances in power system simulation have included the use of complex rectangular current and voltage (I-V) variables for solving the power flow and three-phase power flow problems. This formulation has demonstrated superior convergence properties over conventional polar coordinate based formulations for three-phase power flow, but has failed to replicate the same advantages for power flow in general due to convergence issues with systems containing PV buses. In this paper, we demonstrate how circuit simulation techniques can provide robust convergence for any complex I-V formulation that is derived from our split equivalent circuit representation. Application to power grid test systems with up to 10000 buses demonstrates consistent global convergence to the correct physical solution from arbitrary initial conditions.Comment: Presented at IEEE PES General Meeting, July 2017, Chicag
    corecore