17 research outputs found

    Signaling Pathways as Therapeutic Targets in Pediatric B-cell Precursor Acute Lymphoblastic Leukemia

    Get PDF
    Intra- and inter-cellular signaling pathways have become promising candidates for cancer therapy, because they are frequently affected by oncogenic aberrations and specific small molecule inhibitors are available. The aim of this thesis is to identify and evaluate signaling pathways that may be targeted by novel therapeutic approaches in children with BCP-ALL

    JAK2 aberrations in childhood B-cell precursor acute lymphoblastic leukemia

    Get PDF
    JAK2 abnormalities may serve as target for precision medicines in pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL). In the current study we performed a screening for JAK2 mutations and translocations, analyzed the clinical outcome and studied the efficacy of two JAK inhibitors in primary BCP-ALL cells. Importantly, we identify a number of limitations of JAK inhibitor therapy. JAK2 mutations mainly occurred in the poor prognostic subtypes BCR-ABL1-like and non- BCR-ABL1-like B-other (negative for sentinel cytogenetic lesions). JAK2 translocations were restricted to BCR-ABL1-like cases. Momelotinib and ruxolitinib were cytotoxic in both JAK2 translocated and JAK2 mutated cells, although efficacy in JAK2 mutated cells highly depended on cytokine receptor activation by TSLP. However, our data also suggest that the effect of JAK inhibition may be compromised by mutations in alternative survival pathways and microenvironment-induced resistance. Furthermore, inhibitors induced accumulation of phosphorylated JAK2Y1007, which resulted in a profound re-activation of JAK2 signaling upon release of the inhibitors. This preclinical evidence implies that further optimization and evaluation of JAK inhibitor treatment is necessary prior to its clinical integration in pediatric BCP-ALL

    Fibroblast growth factor receptor signaling in pediatric B-cell precursor acute lymphoblastic leukemia

    Get PDF
    textabstractThe FGF receptor signaling pathway is recurrently involved in the leukemogenic processes. Oncogenic fusions of FGFR1 with various fusion partners were described in myeloid proliferative neoplasms, and overexpression and mutations of FGFR3 are common in multiple myeloma. In addition, fibroblast growth factors are abundant in the bone marrow, and they were shown to enhance the survival of acute myeloid leukemia cells. Here we investigate the effect of FGFR stimulation on pediatric BCP-ALL cells in vitro, and search for mutations with deep targeted next-generation sequencing of mutational hotspots in FGFR1, FGFR2, and FGFR3. In 481 primary BCP-ALL cases, 28 samples from 19 unique relapsed BCPALL cases, and twelve BCP-ALL cell lines we found that mutations are rare (4/481 = 0.8%, 0/28 and 0/12) and do not affect codons which are frequently mutated in other malignancies. However, recombinant ligand FGF2 reduced the response to prednisolone in several BCP-ALL cell lines in vitro. We therefore conclude that FGFR signaling can contribute to prednisolone resistance in BCP-ALL cells, but that activating mutations in this receptor tyrosine kinase family are very rare

    High PDGFRA

    No full text

    Fibroblast growth factor receptor signaling in pediatric B-cell precursor acute lymphoblastic leukemia

    No full text
    The FGF receptor signaling pathway is recurrently involved in the leukemogenic processes. Oncogenic fusions of FGFR1 with various fusion partners were described in myeloid proliferative neoplasms, and overexpression and mutations of FGFR3 are common in multiple myeloma. In addition, fibroblast growth factors are abundant in the bone marrow, and they were shown to enhance the survival of acute myeloid leukemia cells. Here we investigate the effect of FGFR stimulation on pediatric BCP-ALL cells in vitro, and search for mutations with deep targeted next-generation sequencing of mutational hotspots in FGFR1, FGFR2, and FGFR3. In 481 primary BCP-ALL cases, 28 samples from 19 unique relapsed BCP-ALL cases, and twelve BCP-ALL cell lines we found that mutations are rare (4/481 = 0.8%, 0/28 and 0/12) and do not affect codons which are frequently mutated in other malignancies. However, recombinant ligand FGF2 reduced the response to prednisolone in several BCP-ALL cell lines in vitro. We therefore conclude that FGFR signaling can contribute to prednisolone resistance in BCP-ALL cells, but that activating mutations in this receptor tyrosine kinase family are very rare
    corecore