1,942 research outputs found

    Analytic calculation of energy transfer and heat flux in a one-dimensional system

    Get PDF
    In the context of the problem of heat conduction in one-dimensional systems, we present an analytical calculation of the instantaneous energy transfer across a tagged particle in a one-dimensional gas of equal-mass, hard-point particles. From this, we obtain a formula for the steady-state energy flux, and identify and separate the mechanical work and heat conduction contributions to it. The nature of the Fourier law for the model, and the nonlinear dependence of the rate of mechanical work on the stationary drift velocity of the tagged particle, are analyzed and elucidated.Comment: 17 pages including title pag

    Estimating the Social Value of Higher Education: Willingness to Pay for Community and Technical Colleges

    Get PDF
    Much is known about private returns to education in the form of higher earnings. Less is known about social value, over and above the private, market value. Associations between education and socially-desirable outcomes are strong, but disentangling the effect of education from other causal factors is challenging. The purpose of this paper is to estimate the social value of one form of higher education. We elicit willingness to pay for the Kentucky Community and Technical College System directly through a stated-preferences survey and compare our estimate of total social value to our estimates of private value in the form of increased earnings. Our earnings estimates are based on two distinct data sets, one administrative and one from the U.S. Census. The difference between the total social value and the increase in earnings is our measure of the education externality. Our work differs from previous research by eliciting values directly in a way that yields a total value including any external benefits and by focusing on education at the community college level. Our preferred estimate indicates the social value of expanding the system substantially exceeds private value by approximately 50 percent.social returns, education externalities, contingent valuation, earnings

    Developing the MTO Formalism

    Full text link
    We review the simple linear muffin-tin orbital method in the atomic-spheres approximation and a tight-binding representation (TB-LMTO-ASA method), and show how it can be generalized to an accurate and robust Nth order muffin-tin orbital (NMTO) method without increasing the size of the basis set and without complicating the formalism. On the contrary, downfolding is now more efficient and the formalism is simpler and closer to that of screened multiple-scattering theory. The NMTO method allows one to solve the single-electron Schroedinger equation for a MT-potential -in which the MT-wells may overlap- using basis sets which are arbitrarily minimal. The substantial increase in accuracy over the LMTO-ASA method is achieved by substitution of the energy-dependent partial waves by so-called kinked partial waves, which have tails attached to them, and by using these kinked partial waves at N+1 arbitrary energies to construct the set of NMTOs. For N=1 and the two energies chosen infinitesimally close, the NMTOs are simply the 3rd-generation LMTOs. Increasing N, widens the energy window, inside which accurate results are obtained, and increases the range of the orbitals, but it does not increase the size of the basis set and therefore does not change the number of bands obtained. The price for reducing the size of the basis set through downfolding, is a reduction in the number of bands accounted for and -unless N is increased- a narrowing of the energy window inside which these bands are accurate. A method for obtaining orthonormal NMTO sets is given and several applications are presented.Comment: 85 pages, Latex2e, Springer style, to be published in: Lecture notes in Physics, edited by H. Dreysse, (Springer Verlag

    Third-Generation TB-LMTO

    Full text link
    We describe the screened Korringa-Kohn-Rostoker (KKR) method and the third-generation linear muffin-tin orbital (LMTO) method for solving the single-particle Schroedinger equation for a MT potential. The simple and popular formalism which previously resulted from the atomic-spheres approximation (ASA) now holds in general, that is, it includes downfolding and the combined correction. Downfolding to few-orbital, possibly short-ranged, low-energy, and possibly orthonormal Hamiltonians now works exceedingly well, as is demonstrated for a high-temperature superconductor. First-principles sp3 and sp3d5 TB Hamiltonians for the valence and lowest conduction bands of silicon are derived. Finally, we prove that the new method treats overlap of the potential wells correctly to leading order and we demonstrate how this can be exploited to get rid of the empty spheres in the diamond structure.Comment: latex2e, 32 printed pages, Postscript figs, to be published in: Tight-Binding Approach to Computational Materials Science, MRS Symposia Proceedings No. 491 (MRS, Pittsburgh, 1998

    Anisotropies in insulating La2x_{2-x}Srx_xCuO4_4: angular resolved photoemission and optical absorption

    Full text link
    Due to the orthorhombic distortion of the lattice, the electronic hopping integrals along the aa and bb diagonals, the orthorhombic directions, are slightly different. We calculate their difference in the LDA and find tatb8t_{a}^{\prime}-t_{b}^{\prime}\approx 8 meV. We argue that electron correlations in the insulating phase of La2x_{2-x}Srx_{x}CuO4_{4}, i. e. at doping x0.055,x\leq 0.055, dramatically enhance the (tatb)(t_{a}^{\prime}-t_{b}^{\prime}) -splitting between the aa- and bb-hole valleys. In particular, we predict that the intensity of both angle-resolved photoemission and of optical absorption is very different for the aa and bb nodal points

    Terahertz Plasmonic Structure With Enhanced Sensing Capabilities

    Get PDF

    Combined density-functional and dynamical cluster quantum Monte Carlo calculations for three-band Hubbard models for hole-doped cuprate superconductors

    Full text link
    Using a combined local density functional theory (LDA-DFT) and quantum Monte Carlo (QMC) dynamic cluster approximation approach, the parameter dependence of the superconducting transition temperature Tc of several single-layer hole-doped cuprate superconductors with experimentally very different Tcmax is investigated. The parameters of two different three-band Hubbard models are obtained using the LDA and the downfolding Nth-order muffin-tin orbital technique with N=0 and 1 respectively. QMC calculations on 4-site clusters show that the d-wave transition temperature Tc depends sensitively on the parameters. While the N=1 MTO basis set which reproduces all three pdσpd\sigma bands leads to a d-wave transition, the N=0 set which merely reproduces the LDA Fermi surface and velocities does not

    The Structure of Barium in the hcp Phase Under High Pressure

    Full text link
    Recent experimental results on two hcp phases of barium under high pressure show interesting variation of the lattice parameters. They are here interpreted in terms of electronic structure calculation by using the LMTO method and generalized pseudopotential theory (GPT) with a NFE-TBB approach. In phase II the dramatic drop in c/a is an instability analogous to that in the group II metals but with the transfer of s to d electrons playing a crucial role in Ba. Meanwhile in phase V, the instability decrease a lot due to the core repulsion at very high pressure. PACS numbers: 62.50+p, 61.66Bi, 71.15.Ap, 71.15Hx, 71.15LaComment: 29 pages, 8 figure
    corecore