107 research outputs found

    Resolving cellular systems by ultra-sensitive and economical single-cell transcriptome filtering

    No full text
    Single-cell transcriptomics suffer from sensitivity limits that restrict low abundance transcript identification, affects clustering and can hamper downstream analyses. Here, we describe Constellation sequencing (Constellation-Seq), a molecular transcriptome filter that delivers two orders of magnitude sensitivity gains by maximizing read utility while reducing the data sparsity and sequencing costs. The technique reliably measures changes in gene expression and was demonstrated by resolving rare dendritic cell populations from a peripheral blood mononuclear cell sample sample and exploring their biology with extreme resolution. The simple and powerful method is fully compatible with standard scRNA-Seq library preparation protocols and can be used for hypothesis testing, marker validation or investigating pathways

    Small molecule antagonism of oxysterol-induced Epstein-Barr virus induced gene 2 (EBI2) activation

    Get PDF
    The Epstein–Barr virus induced gene 2 (EBI2) was recently identified as the first oxysterol-activated 7TM receptor. EBI2 is essential for B cell trafficking within lymphoid tissues and thus the humoral immune response in general. Here we characterize the antagonism of the non-peptide molecule GSK682753A, which blocks oxysterol-induced G-protein activation, β-arrestin recruitment and B-cell chemotaxis. We furthermore demonstrate that activation triggers pertussis toxin-sensitive MAP kinase phosphorylation, which is also inhibited by GSK682753A. Thus, EBI2 signalling in B cells mediates key phenotypic functions via signalling pathways amenable to manipulation providing additional therapeutic options for inhibiting EBI2 activity
    • …
    corecore