2,755 research outputs found

    Monte Carlo Study of the Inflation-Deflation Transition in a Fluid Membrane

    Full text link
    We study the conformation and scaling properties of a self-avoiding fluid membrane, subject to an osmotic pressure pp, by means of Monte Carlo simulations. Using finite size scaling methods in combination with a histogram reweighting techniques we find that the surface undergoes an abrupt conformational transition at a critical pressure pp^\ast, from low pressure deflated configurations with a branched polymer characteristics to a high pressure inflated phase, in agreement with previous findings \cite{gompper,baum}. The transition pressure pp^{\ast} scales with the system size as pNαp^\ast \propto N^{-\alpha}, with α=0.69±0.01\alpha = 0.69 \pm 0.01. Below pp^\ast the enclosed volume scales as VNV \propto N, in accordance with the self-avoiding branched polymer structure, and for ppp\searrow p^{\ast} our data are consistent with the finite size scaling form VNβ+V \propto N^{\beta_{+}}, where β+=1.43±0.04\beta_{+} = 1.43 \pm 0.04. Also the finite size scaling behavior of the radii of gyration and the compressibility moduli are obtained. Some of the observed exponents and the mechanism behind the conformational collapse are interpreted in terms of a Flory theory.Comment: 20 pages + postscript-file, Latex + Postscript, IFA Report No. 94/1

    Pulsed pumping of a Bose-Einstein condensate

    Full text link
    In this work, we examine a system for coherent transfer of atoms into a Bose-Einstein condensate. We utilize two spatially separate Bose-Einstein condensates in different hyperfine ground states held in the same dc magnetic trap. By means of a pulsed transfer of atoms, we are able to show a clear resonance in the timing of the transfer, both in temperature and number, from which we draw conclusions about the underlying physical process. The results are discussed in the context of the recently demonstrated pumped atom laser.Comment: 5 pages, 5 figures, published in Physical Review

    Achieving peak brightness in an atom laser

    Get PDF
    In this paper we present experimental results and theory on the first continuous (long pulse) Raman atom laser. The brightness that can be achieved with this system is three orders of magnitude greater than has been previously demonstrated in any other continuously outcoupled atom laser. In addition, the energy linewidth of a continuous atom laser can be made arbitrarily narrow compared to the mean field energy of a trapped condensate. We analyze the flux and brightness of the atom laser with an analytic model that shows excellent agreement with experiment with no adjustable parameters.Comment: 4 pages, 4 black and white figures, submitted to Physical Revie

    Approaching the Heisenberg limit in an atom laser

    Get PDF
    We present experimental and theoretical results showing the improved beam quality and reduced divergence of an atom laser produced by an optical Raman transition, compared to one produced by an rf transition. We show that Raman outcoupling can eliminate the diverging lens effect that the condensate has on the outcoupled atoms. This substantially improves the beam quality of the atom laser, and the improvement may be greater than a factor of 10 for experiments with tight trapping potentials. We show that Raman outcoupling can produce atom lasers whose quality is only limited by the wave function shape of the condensate that produces them, typically a factor of 1.3 above the Heisenberg limit

    Observation of transverse interference fringes on an atom laser beam

    Get PDF
    Using the unique detection properties offered by metastable helium atoms we have produced high resolution images of the transverse spatial profiles of an atom laser beam. We observe fringes on the beam, resulting from quantum mechanical interference between atoms that start from rest at different transverse locations within the outcoupling surface and end up at a later time with different velocities at the same transverse position. Numerical simulations in the low output-coupling limit give good quantitative agreement with our experimental data

    Investigation and comparison of multi-state and two-state atom laser output-couplers

    Full text link
    We investigate the spatial structure and temporal dynamics created in a Bose-Einstein condensate (BEC) by radio-frequency (RF) atom laser output-couplers using a one-dimensional mean-field model. We compare the behavior of a `pure' two-state atom laser to the multi-level systems demonstrated in laboratories. In particular, we investigate the peak homogeneous output flux, classical fluctuations in the beam and the onset of a bound state which shuts down the atom laser output.Comment: 9 pages, 8 figure

    A detector for continuous measurement of ultra-cold atoms in real time

    Full text link
    We present the first detector capable of recording high-bandwidth real time atom number density measurements of a Bose Einstein condensate. Based on a two-color Mach-Zehnder interferometer, our detector has a response time that is six orders of magnitude faster than current detectors based on CCD cameras while still operating at the shot-noise limit. With this minimally destructive system it may be possible to implement feedback to stabilize a Bose-Einstein condensate or an atom laser.Comment: 3 pages, 3 figures, submitted to optics letter

    A multibeam atom laser: coherent atom beam splitting from a single far detuned laser

    Full text link
    We report the experimental realisation of a multibeam atom laser. A single continuous atom laser is outcoupled from a Bose-Einstein condensate (BEC) via an optical Raman transition. The atom laser is subsequently split into up to five atomic beams with slightly different momenta, resulting in multiple, nearly co-propagating, coherent beams which could be of use in interferometric experiments. The splitting process itself is a novel realization of Bragg diffraction, driven by each of the optical Raman laser beams independently. This presents a significantly simpler implementation of an atomic beam splitter, one of the main elements of coherent atom optics

    Nearly-zero transmission through periodically modulated ultrathin metal films

    Full text link
    Transmission of light through an optically ultrathin metal film with a thickness comparable to its skin depth is significant. We demonstrate experimentally nearly-zero transmission of light through a film periodically modulated by a one-dimensional array of subwavelength slits. The suppressed optical transmission is due to the excitation of surface plasmon polaritons and the zero-transmission phenomenon is strongly dependent on the polarization of the incident wave.Comment: accepted by AP
    corecore