10 research outputs found

    Secure Secondary Authentication Framework for Efficient Mutual Authentication on a 5G Data Network

    No full text
    The service-based architecture of the Fifth Generation(5G) had combined the services and security architectures and enhanced the authentication process of services to expand the coverage of the network, including heterogeneous devices. This architecture uses the secondary authentication for mutual authentication between the User Equipment (UE) and the Data Network (DN) to authenticate devices and services. However, this authentication mechanism can cause a signaling storm in the Non-Access Stratum (NAS) because the end node needs to communicate with the authentication server of the NAS area. This problem could affect the availability of the network when the network is extended. This research proposes a mutual authentication framework that can efficiently perform a mutual authentication process through secondary authentication between UE and DN. The proposed framework uses newly devised network functions: Secondary Authentication Function (SAF) and the Authentication Data Management Function (ADMF). This framework proposes a methodology at the protocol level for efficient mutual authentication using the mobile edge computing architecture. We analyzed the proposed framework in the point of security considerations, and we evaluated the effect of the framework on the traffic of the NAS layer and user experience. Our simulation results show that the proposed framework can reduce the NAS traffic by 39% and total traffic of the overall network by 10%

    Blockchain-Based Cyber Threat Intelligence System Architecture for Sustainable Computing

    No full text
    Nowadays, the designing of cyber-physical systems has a significant role and plays a substantial part in developing a sustainable computing ecosystem for secure and scalable network architecture. The introduction of Cyber Threat Intelligence (CTI) has emerged as a new security system to mitigate existing cyber terrorism for advanced applications. CTI demands a lot of requirements at every step. In particular, data collection is a critical source of information for analysis and sharing; it is highly dependent on the reliability of the data. Although many feeds provide information on threats recently, it is essential to collect reliable data, as the data may be of unknown origin and provide information on unverified threats. Additionally, effective resource management needs to be put in place due to the large volume and diversity of the data. In this paper, we propose a blockchain-based cyber threat intelligence system architecture for sustainable computing in order to address issues such as reliability, privacy, scalability, and sustainability. The proposed system model can cooperate with multiple feeds that collect CTI data, create a reliable dataset, reduce network load, and measure organizations’ contributions to motivate participation. To assess the proposed model’s effectiveness, we perform the experimental analysis, taking into account various measures, including reliability, privacy, scalability, and sustainability. Experimental results of evaluation using the IP of 10 open source intelligence (OSINT) CTI feeds show that the proposed model saves about 15% of storage space compared to total network resources in a limited test environment

    Reflectance According to Cell Size, Foaming Ratio and Refractive Index of Microcellular Foamed Amorphous Polymer

    No full text
    Microcellular foamed plastic has a cell size of approximately 0.1 to 10 microns inside a foamed polymer and a cell density in the range of 109 to 1015 cells/cm3. Typically, the formation of numerous uniform cells inside a polymer can be effectively used for various purposes, such as lightweight materials, insulation and sound absorbing materials. However, it has recently been reported that these dense cell structures, which are induced through microcellular foaming, can affect the light passing through the medium, which affects the haze and permeability and causes the diffused reflection of light to achieve high diffuse reflectivity. In this study, the effects of cell size, foaming ratio and refractive index on the optical performance were investigated by applying the microcellular foaming process to three types of amorphous polymer materials. Thus, this study experimentally confirmed that the advantages of porous materials can be implemented as optical properties by providing a high specific surface area as a small and uniform cell formed by inducing a high foaming ratio through a microcellular foaming process

    Machine Learning-Based Network Sub-Slicing Framework in a Sustainable 5G Environment

    No full text
    Nowadays, 5G network infrastructures are being developed for various industrial IoT (Internet of Things) applications worldwide, emerging with the IoT. As such, it is possible to deploy power-optimized technology in a way that promotes the long-term sustainability of networks. Network slicing is a fundamental technology that is implemented to handle load balancing issues within a multi-tenant network system. Separate network slices are formed to process applications having different requirements, such as low latency, high reliability, and high spectral efficiency. Modern IoT applications have dynamic needs, and various systems prioritize assorted types of network resources accordingly. In this paper, we present a new framework for the optimum performance of device applications with optimized network slice resources. Specifically, we propose a Machine Learning-based Network Sub-slicing Framework in a Sustainable 5G Environment in order to optimize network load balancing problems, where each logical slice is divided into a virtualized sub-slice of resources. Each sub-slice provides the application system with different prioritized resources as necessary. One sub-slice focuses on spectral efficiency, whereas the other focuses on providing low latency with reduced power consumption. We identify different connected device application requirements through feature selection using the Support Vector Machine (SVM) algorithm. The K-means algorithm is used to create clusters of sub-slices for the similar grouping of types of application services such as application-based, platform-based, and infrastructure-based services. Latency, load balancing, heterogeneity, and power efficiency are the four primary key considerations for the proposed framework. We evaluate and present a comparative analysis of the proposed framework, which outperforms existing studies based on experimental evaluation

    A Schematic depiction method for a non-Euclidean surface in axiomatic design

    No full text
    corecore