3 research outputs found

    Characteristics of Energy Dissipation Rate Observed from the High-Frequency Sonic Anemometer at Boseong, South Korea

    No full text
    The characteristics of low-level turbulence at Boseong, located on the southern coast of South Korea, were investigated in terms of eddy dissipation rate (EDR) using 1-year (2018) of wind data obtained from the Boseong Meteorological Observatory (BMO), a World Meteorological Organization testbed. At BMO, a 307 m tall tower is installed on which four high-frequency (20 Hz) sonic anemometers are mounted at 60, 140, and 300 m above ground level (AGL). In addition, a sonic anemometer at 2.5 m AGL is located to the south of the tower. EDRs are estimated from the wind measurements based on three different EDR estimation methods. The first two methods use the inertial dissipation method derived from Kolmogorov turbulence theory, and the third uses a maximum likelihood estimation assuming a von Kármán spectral model. Reasonable agreement was obtained between the three methods with various fluctuations, including diurnal variations for all seasons, while the EDR calculated from the third method displayed slightly higher EDR values than the other two methods. The result of the analysis showed that the mean (standard deviations) of logarithms of EDR had larger values as height decreased (increased), and the means were higher in the unstable planetary boundary layer (PBL) than in the stable PBL for this heterogeneous location adjacent to the coastlines. The probability density functions (PDFs) of the EDRs showed that the distribution was well-represented by a lognormal distribution in both the stable and unstable PBL, although the PDFs at the lowest level (2.5 m) deviated from those at other levels due to surface effects. Seasonal variations in the PDFs showed that there was less difference in the shape of the PDFs depending on atmospheric stability in the wintertime. Finally, we calculate the 1-yr statistics of the observed EDR, which will be used for future LLT forecast systems in Korea

    Characteristics of the derived energy dissipation rate using the 1 Hz commercial aircraft quick access recorder (QAR) data

    No full text
    The cube root of the energy dissipation rate (EDR), as a standard reporting metric of atmospheric turbulence, is estimated using 1 Hz quick access recorder (QAR) data from Korean-based national air carriers with two different types of aircraft (Boeing 737 (B737) and Boeing 777 (B777)), archived for 12 months from January to December 2012. The EDRs are estimated using three wind components (zonal, meridional, and derived vertical wind) and the derived equivalent vertical gust (DEVG) of the 1 Hz post-flight data by applying all possible EDR methods. Wind components are used to calculate three different EDRs, utilizing the second-order structure function, power spectral density, and von Karman wind spectrum and maximum-likelihood method. In addition, two DEVG-based EDRs are calculated using the lognormal mapping technique and the predefined parabolic relationship between the observed EDR and DEVG. When the reliability of lower-rate (1 Hz) data to estimate the EDR is examined using the higher-rate (20 Hz) wind data obtained from a tall tower observatory, it is found that the 1 Hz EDR can be underestimated (2.19 %-12.56 %) or overestimated (9.32 %-10.91 %). In this study, it is also found that the structure-function-based EDR shows lower uncertainty (2.19 %-8.14 %) than the energy spectrum-based EDRs (9.32 %-12.56 %) when the 1 Hz datasets are used. The observed EDR estimates using 1 Hz QAR data are examined in three strong turbulence cases that are relevant to clear-air turbulence (CAT), mountain wave turbulence (MWT), and convectively induced turbulence (CIT). The observed EDR estimates derived from three different wind components show different characteristics depending on potential sources of atmospheric turbulence at cruising altitudes, indicating good agreement with selected strong turbulence cases with respect to turbulence intensity and incident time. Zonal wind-based EDRs are stronger in the CAT case that is affected by synoptic-scale forcing such as upper-level jet/frontal system. In the CIT case, vertical wind-based EDRs are stronger, which is related to convectively induced gravity waves outside the cloud boundary. The MWT case has a peak of the EDR based on both the zonal and vertical winds, which can be related to the propagation of mountain waves and their subsequent breaking. It is also found that the CAT and MWT cases occurred by synoptic-scale forcing have longer variations in the observed EDRs before and after the turbulence incident, while the CIT case triggered by a mesoscale convective cell has an isolated peak of the EDR. Current results suggest that the 1 Hz aircraft data can be an additional source of the EDR estimations contributing to expand more EDR information at the cruising altitudes in the world and that these data can be helpful to provide a better climatology of aviation turbulence and a situational awareness of cruising aircraft.N

    A Detection of Convectively Induced Turbulence Using in Situ Aircraft and Radar Spectral Width Data

    No full text
    A commercial aircraft, departing from Seoul to Jeju Island in South Korea, encountered a convectively induced turbulence (CIT) at about z = 2.2 km near Seoul on 28 October 2018. At this time, the observed radar reflectivity showed that the convective band with cloud tops of z = 6–7 km passed the CIT region with high values of spectral width (SW; larger than 4 m s–1). Using the 1 Hz wind data recorded by the aircraft, we estimated an objective intensity of the CIT as a cube root of eddy dissipation rate (EDR) based on the inertial range technique, which was about 0.33–0.37 m2/3 s−1. Radar-based EDR was also derived by lognormal mapping technique (LMT), showing that the EDR was about 0.3–0.35 m2/3 s−1 near the CIT location, which is consistent with in situ EDR. In addition, a feasibility of the CIT forecast was tested using the weather and research forecast (WRF) model with a 3 km horizontal grid spacing. The model accurately reproduced the convective band passing the CIT event with an hour delay, which allows the use of two methods to calculate EDR: The first is using both the sub-grid and resolved turbulent kinetic energy to infer the EDR; the second is using the LMT for converting absolute vertical velocity (and its combination with the Richardson number) to EDR-scale. As a result, we found that the model-based EDRs were about 0.3–0.4 m2/3 s−1 near the CIT event, which is consistent with the estimated EDRs from both aircraft and radar observations
    corecore