4 research outputs found

    A Methodology of Condition Monitoring System Utilizing Supervised and Semi-Supervised Learning in Railway

    No full text
    In this paper, research was conducted on anomaly detection of wheel flats. In the railway sector, conducting tests with actual railway vehicles is challenging due to safety concerns for passengers and maintenance issues as it is a public industry. Therefore, dynamics software was utilized. Next, STFT (short-time Fourier transform) was performed to create spectrogram images. In the case of railway vehicles, control, monitoring, and communication are performed through TCMS, but complex analysis and data processing are difficult because there are no devices such as GPUs. Furthermore, there are memory limitations. Therefore, in this paper, the relatively lightweight models LeNet-5, ResNet-20, and MobileNet-V3 were selected for deep learning experiments. At this time, the LeNet-5 and MobileNet-V3 models were modified from the basic architecture. Since railway vehicles are given preventive maintenance, it is difficult to obtain fault data. Therefore, semi-supervised learning was also performed. At this time, the Deep One Class Classification paper was referenced. The evaluation results indicated that the modified LeNet-5 and MobileNet-V3 models achieved approximately 97% and 96% accuracy, respectively. At this point, the LeNet-5 model showed a training time of 12 min faster than the MobileNet-V3 model. In addition, the semi-supervised learning results showed a significant outcome of approximately 94% accuracy when considering the railway maintenance environment. In conclusion, considering the railway vehicle maintenance environment and device specifications, it was inferred that the relatively simple and lightweight LeNet-5 model can be effectively utilized while using small images

    Anomaly Detection Method in Railway Using Signal Processing and Deep Learning

    No full text
    In this paper, anomaly detection of wheel flats based on signal processing and deep learning techniques is analyzed. Wheel flats mostly affect running stability and ride comfort. Currently, domestic railway companies visually inspect wheel flats one by one with their eyes after railway vehicles enter the railway depots for maintenance. Therefore, CBM (Condition-Based Maintenance) is required for wheel flats resolution. Anomaly detection for wheel flat signals of railway vehicles using Order analysis and STFT (Short Time Fourier Transform) is studied in this paper. In the case of railway vehicles, it is not easy to obtain actual failure data through running vehicles in a university laboratory due to safety and cost issues. Therefore, vibration-induced acceleration was obtained using a multibody dynamics simulation software, SIMPACK. This method is also proved in the other paper by rig tests. In addition, since the noise signal was not included in the simulated vibration, the noise signal obtained from the Seoul Metro Subway Line 7 vehicle was overlapped with the simulated one. Finally, to improve the performance of both detection rate and real-time of characteristics based on existing LeNet-5 architectures, spectrogram images transformed from time domain data were proceeded with the LeNet deep learning model modified with the pooling method and activation function. As a result, it is validated that the method using the spectrogram with a deep learning approach yields higher accuracy than the time domain data

    Application of Vibration Signal Processing Methods to Detect and Diagnose Wheel Flats in Railway Vehicles

    No full text
    This paper studied two useful vibration signal processing methods for detection and diagnosis of wheel flats. First, the cepstrum analysis method combined with order analysis was applied to the vibration signal to detect periodic responses in the spectrum for a rotating body such as a wheel. In the case of railway vehicles, changes in speed occur while driving. Thus, it is difficult to effectively evaluate the flat signal of the wheel because the time cycle of the flat signal changes frequently. Thus, the order analysis was combined with the existing cepstrum analysis method to consider the changes in train speed. The order analysis changes the domain of the vibration signal from time domain to rotating angular domain to consider the train speed change in the cepstrum analysis. Second, the cross correlation analysis method combined with the order analysis was applied to evaluate the flat signal from the vibration signal well containing the severe field noise produced by the vibrations of the rail irregularities and bogie components. Unlike the cepstrum analysis method, it can find out the wheel flat size because the flat signal linearly increases to the wheel flat. Thus, it is more effective when checking the size of the wheel flat. Finally, the data tested in the Korea Railroad Research Institute were used to confirm that the cepstrum analysis and cross correlation analysis methods are appropriate for not only simulation but also test data

    Application of Vibration Signal Processing Methods to Detect and Diagnose Wheel Flats in Railway Vehicles

    No full text
    This paper studied two useful vibration signal processing methods for detection and diagnosis of wheel flats. First, the cepstrum analysis method combined with order analysis was applied to the vibration signal to detect periodic responses in the spectrum for a rotating body such as a wheel. In the case of railway vehicles, changes in speed occur while driving. Thus, it is difficult to effectively evaluate the flat signal of the wheel because the time cycle of the flat signal changes frequently. Thus, the order analysis was combined with the existing cepstrum analysis method to consider the changes in train speed. The order analysis changes the domain of the vibration signal from time domain to rotating angular domain to consider the train speed change in the cepstrum analysis. Second, the cross correlation analysis method combined with the order analysis was applied to evaluate the flat signal from the vibration signal well containing the severe field noise produced by the vibrations of the rail irregularities and bogie components. Unlike the cepstrum analysis method, it can find out the wheel flat size because the flat signal linearly increases to the wheel flat. Thus, it is more effective when checking the size of the wheel flat. Finally, the data tested in the Korea Railroad Research Institute were used to confirm that the cepstrum analysis and cross correlation analysis methods are appropriate for not only simulation but also test data
    corecore