397 research outputs found

    Effective data reduction algorithm for topological data analysis

    Full text link
    One of the most interesting tools that have recently entered the data science toolbox is topological data analysis (TDA). With the explosion of available data sizes and dimensions, identifying and extracting the underlying structure of a given dataset is a fundamental challenge in data science, and TDA provides a methodology for analyzing the shape of a dataset using tools and prospects from algebraic topology. However, the computational complexity makes it quickly infeasible to process large datasets, especially those with high dimensions. Here, we introduce a preprocessing strategy called the Characteristic Lattice Algorithm (CLA), which allows users to reduce the size of a given dataset as desired while maintaining geometric and topological features in order to make the computation of TDA feasible or to shorten its computation time. In addition, we derive a stability theorem and an upper bound of the barcode errors for CLA based on the bottleneck distance.Comment: 13 pages, 10 figures, 2 table

    Detection of COVID-19 epidemic outbreak using machine learning

    Get PDF
    BackgroundThe coronavirus disease (COVID-19) pandemic has spread rapidly across the world, creating an urgent need for predictive models that can help healthcare providers prepare and respond to outbreaks more quickly and effectively, and ultimately improve patient care. Early detection and warning systems are crucial for preventing and controlling epidemic spread.ObjectiveIn this study, we aimed to propose a machine learning-based method to predict the transmission trend of COVID-19 and a new approach to detect the start time of new outbreaks by analyzing epidemiological data.MethodsWe developed a risk index to measure the change in the transmission trend. We applied machine learning (ML) techniques to predict COVID-19 transmission trends, categorized into three labels: decrease (L0), maintain (L1), and increase (L2). We used Support Vector Machine (SVM), Random Forest (RF), and XGBoost (XGB) as ML models. We employed grid search methods to determine the optimal hyperparameters for these three models. We proposed a new method to detect the start time of new outbreaks based on label 2, which was sustained for at least 14 days (i.e., the duration of maintenance). We compared the performance of different ML models to identify the most accurate approach for outbreak detection. We conducted sensitivity analysis for the duration of maintenance between 7 days and 28 days.ResultsML methods demonstrated high accuracy (over 94%) in estimating the classification of the transmission trends. Our proposed method successfully predicted the start time of new outbreaks, enabling us to detect a total of seven estimated outbreaks, while there were five reported outbreaks between March 2020 and October 2022 in Korea. It means that our method could detect minor outbreaks. Among the ML models, the RF and XGB classifiers exhibited the highest accuracy in outbreak detection.ConclusionThe study highlights the strength of our method in accurately predicting the timing of an outbreak using an interpretable and explainable approach. It could provide a standard for predicting the start time of new outbreaks and detecting future transmission trends. This method can contribute to the development of targeted prevention and control measures and enhance resource management during the pandemic

    Cognitive-Enhancing Effect of Steamed and Fermented Codonopsis lanceolata

    Get PDF
    Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by memory impairment. Codonopsis lanceolata (C. lanceolata) has been employed clinically for lung inflammatory diseases such as asthma, tonsillitis, and pharyngitis. The present study was undertaken to evaluate the effect of fermented C. lanceolata (300, 500, and 800 mg/kg) on learning and memory impairment induced by scopolamine by using the Morris water maze and passive avoidance tests. To elucidate possible mechanism of cognitive-enhancing activity, we measured acetylcholinesterase (AchE) activity, brain-derived neurotrophic factor (BDNF), and cyclic AMP response element-binding protein (CREB) expression in the brain of mice. Administration of fermented C. lanceolata (800 mg/kg) led to reduced scopolamine-induced memory impairment in the Morris water maze and passive avoidance tests. Accordingly, the administration of fermented C. lanceolata inhibited AchE activity. Interestingly, the level of CREB phosphorylation and BDNF expression in hippocampal tissue of scopolamine-treated mice was significantly increased by the administration of fermented C. lanceolata. These results indicate that fermented C. lanceolata can ameliorate scopolamine-induced memory deficits in mouse and may be an alternative agent for the treatment of AD

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13  TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139  fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV

    Searches for lepton-flavour-violating decays of the Higgs boson in s=13\sqrt{s}=13 TeV pp\mathit{pp} collisions with the ATLAS detector

    Get PDF
    This Letter presents direct searches for lepton flavour violation in Higgs boson decays, H → eτ and H → μτ , performed with the ATLAS detector at the LHC. The searches are based on a data sample of proton–proton collisions at a centre-of-mass energy √s = 13 TeV, corresponding to an integrated luminosity of 36.1 fb−1. No significant excess is observed above the expected background from Standard Model processes. The observed (median expected) 95% confidence-level upper limits on the leptonflavour-violating branching ratios are 0.47% (0.34+0.13−0.10%) and 0.28% (0.37+0.14−0.10%) for H → eτ and H → μτ , respectively.publishedVersio
    corecore