18,926 research outputs found

    Wild-Bootstrapped Variance Ratio Test for Autocorrelation in the Presence of Heteroskedasticity

    Get PDF
    The Breusch-Godfrey’s LM test is one of the most popular tests for autocorrelation. However, it has been shown that the LM test may be erroneous when there exist heteroskedastic errors in regression model. Some remedies recently have been proposed by Godfrey and Tremayne (2005) and Shim et al. (2006). This paper suggests wild-bootstrapped variance ratio test for autocorrelation in the presence of heteroskedasticity. We show through a Monte Carlo simulation that our wild-bootstrapped VR test has better small sample properties and is robust to the structure of heteroskedasticity.variance-ratio test, Breusch-Godfrey’s LM test, autocorrelation, heteroskedasticity, wild bootstrap

    Optimization of Massive Full-Dimensional MIMO for Positioning and Communication

    Full text link
    Massive Full-Dimensional multiple-input multiple-output (FD-MIMO) base stations (BSs) have the potential to bring multiplexing and coverage gains by means of three-dimensional (3D) beamforming. Key technical challenges for their deployment include the presence of limited-resolution front ends and the acquisition of channel state information (CSI) at the BSs. This paper investigates the use of FD-MIMO BSs to provide simultaneously high-rate data communication and mobile 3D positioning in the downlink. The analysis concentrates on the problem of beamforming design by accounting for imperfect CSI acquisition via Time Division Duplex (TDD)-based training and for the finite resolution of analog-to-digital converter (ADC) and digital-to-analog converter (DAC) at the BSs. Both \textit{unstructured beamforming} and a low-complexity \textit{Kronecker beamforming} solution are considered, where for the latter the beamforming vectors are decomposed into separate azimuth and elevation components. The proposed algorithmic solutions are based on Bussgang theorem, rank-relaxation and successive convex approximation (SCA) methods. Comprehensive numerical results demonstrate that the proposed schemes can effectively cater to both data communication and positioning services, providing only minor performance degradations as compared to the more conventional cases in which either function is implemented. Moreover, the proposed low-complexity Kronecker beamforming solutions are seen to guarantee a limited performance loss in the presence of a large number of BS antennas.Comment: 30 pages, 6 figure

    Characterizations and Quantifications of Macroscopic Quantumness and Its Implementations using Optical Fields

    Get PDF
    We present a review and discussions on characterizations and quantifications of macroscopic quantum states as well as their implementations and applications in optical systems. We compare and criticize different measures proposed to define and quantify macroscopic quantum superpositions and extend such comparisons to several types of optical quantum states actively considered for experimental implementations within recent research topics.Comment: 13 pages, 2 figures, references added, review article to be published in the Special Issue of Optics Communications on Macroscopic Quantumness: Theory and Applications in Optical Science

    Mobile Edge Computing via a UAV-Mounted Cloudlet: Optimization of Bit Allocation and Path Planning

    Get PDF
    Unmanned Aerial Vehicles (UAVs) have been recently considered as means to provide enhanced coverage or relaying services to mobile users (MUs) in wireless systems with limited or no infrastructure. In this paper, a UAV-based mobile cloud computing system is studied in which a moving UAV is endowed with computing capabilities to offer computation offloading opportunities to MUs with limited local processing capabilities. The system aims at minimizing the total mobile energy consumption while satisfying quality of service requirements of the offloaded mobile application. Offloading is enabled by uplink and downlink communications between the mobile devices and the UAV that take place by means of frequency division duplex (FDD) via orthogonal or non-orthogonal multiple access (NOMA) schemes. The problem of jointly optimizing the bit allocation for uplink and downlink communication as well as for computing at the UAV, along with the cloudlet's trajectory under latency and UAV's energy budget constraints is formulated and addressed by leveraging successive convex approximation (SCA) strategies. Numerical results demonstrate the significant energy savings that can be accrued by means of the proposed joint optimization of bit allocation and cloudlet's trajectory as compared to local mobile execution as well as to partial optimization approaches that design only the bit allocation or the cloudlet's trajectory.Comment: 14 pages, 5 figures, 2 tables, IEEE Transactions on Vehicular Technolog
    corecore