79,642 research outputs found

    BoRa Jeong, Violin

    Get PDF
    Sonata for Piano and Violin No. 2 in G, Op. 13 / Edvard Grieg; String Duo for Violin and Viola in G major, K. 423 / W.A. Mozart; Liebesleid / Fritz Kreisler; Liebesfreud / Fritz Kreisle

    Annie Hyojeong Jeong, Violin

    Get PDF
    Sonata for Piano and Violin in G Major, K. 301 / Wolfgang Amadeus Mozart; Solo Violin Partita No. 3 in E Major, BWV 1006 / Johann Sebastian Bach; Violin Concerto in D Major, Op 35 / Pyotr Ilyich Tchaikovsk

    Direct observation of the formation of polar nanoregions in Pb(Mg1/3_{1/3}Nb2/3_{2/3})O3_3 using neutron pair distribution function analysis

    Get PDF
    Using neutron pair distribution function (PDF) analysis over the temperature range from 1000 K to 15 K, we demonstrate the existence of local polarization and the formation of medium-range, polar nanoregions (PNRs) with local rhombohedral order in a prototypical relaxor ferroelectric Pb(Mg1/3_{1/3}Nb2/3_{2/3})O3_3. We estimate the volume fraction of the PNRs as a function of temperature and show that this fraction steadily increases from 0 % to a maximum of \sim 30% as the temperature decreases from 650 K to 15 K. Below T\sim200 K the PNRs start to overlap as their volume fraction reaches the percolation threshold. We propose that percolating PNRs and their concomitant overlap play a significant role in the relaxor behavior of Pb(Mg1/3_{1/3}Nb2/3_{2/3})O3_3.Comment: 4 pages, 3 figure

    Diffusive Capture Process on Complex Networks

    Full text link
    We study the dynamical properties of a diffusing lamb captured by a diffusing lion on the complex networks with various sizes of NN. We find that the life time ofalambscalesasN of a lamb scales as \sim N and the survival probability S(N,t)S(N\to \infty,t) becomes finite on scale-free networks with degree exponent γ>3\gamma>3. However, S(N,t)S(N,t) for γ<3\gamma<3 has a long-living tail on tree-structured scale-free networks and decays exponentially on looped scale-free networks. It suggests that the second moment of degree distribution istherelevantfactorforthedynamicalpropertiesindiffusivecaptureprocess.Wenumericallyfindthatthenormalizednumberofcaptureeventsatanodewithdegree is the relevant factor for the dynamical properties in diffusive capture process. We numerically find that the normalized number of capture events at a node with degree k,, n(k),decreasesas, decreases as n(k)\sim k^{-\sigma}.When. When \gamma<3,, n(k)stillincreasesanomalouslyfor still increases anomalously for k\approx k_{max}.Weanalyticallyshowthat. We analytically show that n(k)satisfiestherelation satisfies the relation n(k)\sim k^2P(k)andthetotalnumberofcaptureevents and the total number of capture events N_{tot}isproportionalto is proportional to , which causes the γ\gamma dependent behavior of S(N,t)S(N,t) and $.Comment: 9 pages, 6 figure

    Scale-free networks with tunable degree distribution exponents

    Full text link
    We propose and study a model of scale-free growing networks that gives a degree distribution dominated by a power-law behavior with a model-dependent, hence tunable, exponent. The model represents a hybrid of the growing networks based on popularity-driven and fitness-driven preferential attachments. As the network grows, a newly added node establishes mm new links to existing nodes with a probability pp based on popularity of the existing nodes and a probability 1p1-p based on fitness of the existing nodes. An explicit form of the degree distribution P(p,k)P(p,k) is derived within a mean field approach. For reasonably large kk, P(p,k)kγ(p)F(k,p)P(p,k) \sim k^{-\gamma(p)}{\cal F}(k,p), where the function F{\cal F} is dominated by the behavior of 1/ln(k/m)1/\ln(k/m) for small values of pp and becomes kk-independent as p1p \to 1, and γ(p)\gamma(p) is a model-dependent exponent. The degree distribution and the exponent γ(p)\gamma(p) are found to be in good agreement with results obtained by extensive numerical simulations.Comment: 12 pages, 2 figures, submitted to PR

    Reverse engineering of linking preferences from network restructuring

    Full text link
    We provide a method to deduce the preferences governing the restructuring dynamics of a network from the observed rewiring of the edges. Our approach is applicable for systems in which the preferences can be formulated in terms of a single-vertex energy function with f(k) being the contribution of a node of degree k to the total energy, and the dynamics obeys the detailed balance. The method is first tested by Monte-Carlo simulations of restructuring graphs with known energies, then it is used to study variations of real network systems ranging from the co-authorship network of scientific publications to the asset graphs of the New York Stock Exchange. The empirical energies obtained from the restructuring can be described by a universal function f(k) -k ln(k), which is consistent with and justifies the validity of the preferential attachment rule proposed for growing networks.Comment: 7 pages, 6 figures, submitted to PR
    corecore