1,433 research outputs found

    Period and toroidal knot mosaics

    Full text link
    Knot mosaic theory was introduced by Lomonaco and Kauffman in the paper on `Quantum knots and mosaics' to give a precise and workable definition of quantum knots, intended to represent an actual physical quantum system. A knot (m,n)-mosaic is an m ⁣× ⁣nm \! \times \! n matrix whose entries are eleven mosaic tiles, representing a knot or a link by adjoining properly. In this paper we introduce two variants of knot mosaics: period knot mosaics and toroidal knot mosaics, which are common features in physics and mathematics. We present an algorithm producing the exact enumeration of period knot (m,n)-mosaics for any positive integers m and n, toroidal knot (m,n)-mosaics for co-prime integers m and n, and furthermore toroidal knot (p,p)-mosaics for a prime number p. We also analyze the asymptotics of the growth rates of their cardinality

    Intelligent CCTV Surveillance Based on Sound Recognition and Sound Localization

    Get PDF
    CCTV is used for many purposes, especially for surveillance and fortraffic condition monitoring. This paper proposesan intelligent CCTV system that tracks sound events based on sound recognition and sound localization. From the experimental results, it is evident that the proposed method can be successfully used for the intelligent CCTV system of CCTV

    YAF2 promotes TP53-mediated genotoxic stress response via stabilization of PDCD5

    Get PDF
    AbstractProgrammed cell death 5 (PDCD5) plays a crucial role in TP53-mediated apoptosis, but the regulatory mechanism of PDCD5 itself during apoptosis remains obscure. We identified YY1-associated factor 2 (YAF2) as a novel PDCD5-interacting protein in a yeast two-hybrid screen for PDCD5-interacting proteins. We found that YY1-associated factor 2 (YAF2) binds to and increases PDCD5 stability by inhibiting the ubiquitin-dependent proteosomal degradation pathway. However, knocking-down of YAF2 diminishes the levels of PDCD5 protein but not the levels of PDCD5 mRNA. Upon genotoxic stress response, YAF2 promotes TP53 activation via association with PDCD5. Strikingly, YAF2 failed to promote TP53 activation in the deletion of PDCD5, whereas restoration of wild-type PDCD5WT efficiently reversed the ineffectiveness of YAF2 on TP53 activation. Conversely, PDCD5 efficiently overcame the knockdown effect of YAF2 on ET-induced TP53 activation. Finally, impaired apoptosis upon PDCD5 ablation was substantially rescued by restoration of PDCD5WT but not YAF2-interacting defective PDCD5E4D nor TP53-interacting defective PDCD5E16D mutant. Our findings uncovered an apoptotic signaling cascade linking YAF2, PDCD5, and TP53 during genotoxic stress responses

    Ultrasound of the Urinary Bladder, Revisited

    Get PDF
    Urine-filled bladder can be evaluated easily with ultrasound, and bladder tumors are usually well shown at ultrasound. Although ultrasound is not a primary imaging modality for staging of bladder tumors, it can provide general information regarding depth of tumor invasion into the proper muscle or perivesical adipose tissue. Ultrasound is also useful in showing nonneoplastic lesions of the bladder, such as stone, cystitis, diverticulum and ureterocele. Color Doppler ultrasound can show vascularity of the tumor. It also shows urine flow from the ureteral orifice or through the diverticular neck. As compared with transabdominal ultrasound, transrectal ultrasound shows bladder lesions more markedly in the dorsal wall or neck of the bladder

    Kinetic study for the optimization of ginsenoside Rg3 production by heat treatment of ginsenoside Rb1

    Get PDF
    AbstractBackgroundGinsenoside Rg3 is a promising anticancer agent. It is usually produced by heat treatment of ginseng, in which ginsenoside Rb1 is the major ginsenoside. A kinetic study was conducted to optimize ginsenoside Rg3 production by the heat treatment of ginsenoside Rb1.MethodsGinsenoside Rb1 was heated using an isothermal machine at 80°C and 100°C and analyzed using HPLC. The kinetic parameters were calculated from the experimental results. The activation energy was estimated and used to simulate the process. The optimized parameters of ginsenoside Rg3 production are suggested based on the simulation.ResultsThe rate constants were 0.013 h−1 and 0.073 h−1 for the degradation of ginsenosides Rb1 and Rg3 at 80°C, respectively. The corresponding rate constants at 100°C were 0.045 h−1 and 0.155 h−1. The estimated activation energies of degradation of ginsenosides Rb1 and Rg3 were 69.2 kJ/mol and 40.9 kJ/mol, respectively. The rate constants at different temperatures were evaluated using the estimated activation energies, and the kinetic profiles of ginsenosides Rb1 and Rg3 at each temperature were simulated based on the proposed kinetic model of consecutive reaction. The optimum strategies for producing ginsenoside Rg3 from ginsenoside Rb1 are suggested based on the simulation. With increased temperature, a high concentration of ginsenoside Rg3 is formed rapidly. However, the concentration decreases quickly after the reaching the maximal concentration value.ConclusionThe optimum temperature for producing ginsenoside Rg3 should be the highest temperature technically feasible below 180°C, in consideration of the cooling time. The optimum reaction time for heat treatment is 30 min

    Quadruple 9-mer-based protein binding microarray with DsRed fusion protein

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The interaction between a transcription factor and DNA motif (<it>cis</it>-acting element) is an important regulatory step in gene regulation. Comprehensive genome-wide methods have been developed to characterize protein-DNA interactions. Recently, the universal protein binding microarray (PBM) was introduced to determine if a DNA motif interacts with proteins in a genome-wide manner.</p> <p>Results</p> <p>We facilitated the PBM technology using a DsRed fluorescent protein and a concatenated sequence of oligonucleotides. The PBM was designed in such a way that target probes were synthesized as quadruples of all possible 9-mer combinations, permitting unequivocal interpretation of the <it>cis</it>-acting elements. The complimentary DNA strands of the features were synthesized with a primer and DNA polymerase on microarray slides. Proteins were labeled via N-terminal fusion with DsRed fluorescent protein, which circumvents the need for a multi-step incubation. The PBM presented herein confirmed the well-known DNA binding sequences of Cbf1 and CBF1/DREB1B, and it was also applied to elucidate the unidentified <it>cis</it>-acting element of the OsNAC6 rice transcription factor.</p> <p>Conclusion</p> <p>Our method demonstrated PBM can be conveniently performed by adopting: (1) quadruple 9-mers may increase protein-DNA binding interactions in the microarray, and (2) a one-step incubation shortens the wash and hybridization steps. This technology will facilitate greater understanding of genome-wide interactions between proteins and DNA.</p

    A search for exoplanets around north circumpolar stars. VII. Detection of planetary companion orbiting the largest host star HD 18438

    Full text link
    We have been conducting a exoplanet search survey using Bohyunsan Observatory Echelle Spectrograph (BOES) for the last 18 years. We present the detection of exoplanet candidate in orbit around HD 18438 from high-precision radial velocity (RV) mesurements. The target was already reported in 2018 (Bang et al. 2018). They conclude that the RV variations with a period of 719 days are likely to be caused by the pulsations because the Lomb-Scargle periodogram of HIPPARCOS photometric and Ha EW variations for HD 18438 show peaks with periods close to that of RV variations and there were no correlations between bisectors and RV measurements. However, the data were not sufficient to reach a firm conclusion. We obtained more RV data for four years. The longer time baseline yields a more accurate determination with a revised period of 803 +/- 5 days and the planetary origin of RV variations with a minimum planetary companion mass of 21 +/- 1 MJup. Our current estimate of the stellar parameters for HD 18438 makes it currently the largest star with a planetary companion.Comment: 6 pages, 4 figures, Accept to the Journal of the Korean Astronomical Societ

    Effects of Marital Status and Income on Hypertension: The Korean Genome and Epidemiology Study (KoGES)

    Get PDF
    Objectives: This study aimed to analyze the associations of income, marital status, and health behaviors with hypertension in male and female over 40 years of age in the Korea. Methods: The data were derived from the Korean Genome and Epidemiology Study (KoGES; 4851-302) which included 211 576 participants. To analyze the relationships of income, marital status, and health behaviors with hypertension in male and female over 40 years of age, multiple logistic regression was conducted with adjustments for these variables. Results: The prevalence of hypertension increased linearly as income decreased. The odds ratio for developing hypertension in people with an income of <0.5 million Korean won (KRW) compared to ≥6.0 million KRW was 1.55 (95% confidence interval [CI], 1.25 to 1.93) in the total population, 1.58 (95% CI, 1.27 to 1.98) in male, and 1.07 (95% CI, 0.35 to 3.28) in female. The combined effect of income level and marital status on hypertension was significant. According to income level and marital status, in male, low income and divorce were most associated with hypertension (1.76 times; 95% CI, 1.01 to 3.08). However, in female, the low-income, married group was most associated with hypertension (1.83 times; 95% CI, 1.71 to 1.97). Conclusions: The results of this study show that it is necessary to approach male and female marital status separately according to income in health policies to address inequalities in the prevalence of hypertension
    corecore