22,126 research outputs found
Entangled coherent states versus entangled photon pairs for practical quantum information processing
We compare effects of decoherence and detection inefficiency on entangled
coherent states (ECSs) and entangled photon pairs (EPPs), both of which are
known to be particularly useful for quantum information processing (QIP). When
decoherence effects caused by photon losses are heavy, the ECSs outperform the
EPPs as quantum channels for teleportation both in fidelities and in success
probabilities. On the other hand, when inefficient detectors are used, the
teleportation scheme using the ECSs suffers undetected errors that result in
the degradation of fidelity, while this is not the case for the teleportation
scheme using the EPPs. Our study reveals the merits and demerits of the two
types of entangled states in realizing practical QIP under realistic
conditions.Comment: 9 pages, 6 figures, substantially revised version, to be published in
Phys. Rev.
Field Theoretic Approach to Long Range Reactions
We analyze bimolecular reactions that proceed by a long-ranged reactive
interaction, using a field theoretic approach that takes into account
fluctuations.
We consider both the one-species, reaction and the
two-species, reaction. We consider both mobile and immobile
reactants, both in the presence and in the absence of adsorption.Comment: 9 pages. 4 figures. Uses svjour macros. To appear in Europ. Phys. J.
Near-deterministic quantum teleportation and resource-efficient quantum computation using linear optics and hybrid qubits
We propose a scheme to realize deterministic quantum teleportation using
linear optics and hybrid qubits. It enables one to efficiently perform
teleportation and universal linear-optical gate operations in a simple and
near-deterministic manner using all-optical hybrid entanglement as off-line
resources. Our analysis shows that our new approach can outperforms major
previous ones when considering both the resource requirements and fault
tolerance limits.Comment: 10 pages, 5 figures; extended version, title, abstract and figures
changed, details added, to be published in Phys. Rev.
Violation of Bell's inequality using classical measurements and non-linear local operations
We find that Bell's inequality can be significantly violated (up to
Tsirelson's bound) with two-mode entangled coherent states using only homodyne
measurements. This requires Kerr nonlinear interactions for local operations on
the entangled coherent states. Our example is a demonstration of
Bell-inequality violations using classical measurements. We conclude that
entangled coherent states with coherent amplitudes as small as 0.842 are
sufficient to produce such violations.Comment: 6 pages, 5 figures, to be published in Phys. Rev.
- âŠ