457 research outputs found
Soil Washing of Fluorine Contaminated Soil Using Various Washing Solutions
Bench-scale soil washing experiments were conducted to remove fluoride from contaminated soils. Five washing solutions including hydrochloric acid (HCl), nitric acid (HNO3), sodium hydroxide (NaOH), sulfuric acid (H2SO4) and tartaric acid (C4H6O6) were tested. The concentration of the washing solutions used ranged from 0.1 M to 3 M with a liquid to solid ratio of 10. The soil washing results showed that the most effective washing solution for the removal of fluoride from contaminated soils was HCl. The highest fluoride removal results of approximately 97% from the contaminated soil were obtained using 3M HCl. The fluoride removal efficiency of the washing solution increases in the following order: C4H6O
Comparison of total body irradiation-based or non-total body irradiation-based conditioning regimens for allogeneic stem cell transplantation in pediatric leukemia patients
Purpose : This study aims to compare the outcome of total body irradiation (TBI)- or non-TBI-containing conditioning regimens for leukemia in children. Methods : We retrospectively evaluated 77 children conditioned with TBI (n=40) or non-TBI (n=37) regimens, transplanted at Chonnam National University Hospital between January 1996 and December 2007. The type of transplantation, disease status at the time of transplant, conditioning regimen, engraftment kinetics, development of graft-versus-host disease (GVHD), complications, cause of deaths, overall survival (OS), and event-free survival (EFS) were compared between the 2 groups. Results : Among 34 patients with acute lymphoblastic leukemia (ALL), 28 (82.4%) were in the TBI group, while 72.7% (24/33) of patients with myeloid leukemia were in the non-TBI group. Although the 5-year EFS of the 2 groups was similar for all patients (62% vs 63%), the TBI group showed a better 5-year EFS than the non-TBI group when only ALL patients were analyzed (65% vs 17%; P =0.005). In acute myelogenous leukemia patients, the non-TBI group had better survival tendency (73% vs 38%; P=0.089). The incidence of GVHD, engraftment, survival, cause of death, and late complications was not different between the 2 groups. Conclusion : The TBI and non-TBI groups showed comparable results, but the TBI group showed a significantly higher 5-year EFS than the non-TBI group in ALL patients. Further prospective, randomized controlled studies involving larger number of patients are needed to assess the late-onset complications and to compare the socioeconomic quality of life
Recommended from our members
Locally Controlled Sensing Properties of Stretchable Pressure Sensors Enabled by Micro-Patterned Piezoresistive Device Architecture.
For wearable health monitoring systems and soft robotics, stretchable/flexible pressure sensors have continuously drawn attention owing to a wide range of potential applications such as the detection of human physiological and activity signals, and electronic skin (e-skin). Here, we demonstrated a highly stretchable pressure sensor using silver nanowires (AgNWs) and photo-patternable polyurethane acrylate (PUA). In particular, the characteristics of the pressure sensors could be moderately controlled through a micro-patterned hole structure in the PUA spacer and size-designs of the patterned hole area. With the structural-tuning strategies, adequate control of the site-specific sensitivity in the range of 47~83 kPa-1 and in the sensing range from 0.1 to 20 kPa was achieved. Moreover, stacked AgNW/PUA/AgNW (APA) structural designed pressure sensors with mixed hole sizes of 10/200 µm and spacer thickness of 800 µm exhibited high sensitivity (~171.5 kPa-1) in the pressure sensing range of 0~20 kPa, fast response (100~110 ms), and high stretchability (40%). From the results, we envision that the effective structural-tuning strategy capable of controlling the sensing properties of the APA pressure sensor would be employed in a large-area stretchable pressure sensor system, which needs site-specific sensing properties, providing monolithic implementation by simply arranging appropriate micro-patterned hole architectures
Cholinergic neurons in the dorsomedial hypothalamus regulate mouse brown adipose tissue metabolism.
OBJECTIVE: Brown adipose tissue (BAT) thermogenesis is critical in maintaining body temperature. The dorsomedial hypothalamus (DMH) integrates cutaneous thermosensory signals and regulates adaptive thermogenesis. Here, we study the function and synaptic connectivity of input from DMH cholinergic neurons to sympathetic premotor neurons in the raphe pallidus (Rpa). METHODS: In order to selectively manipulate DMH cholinergic neuron activity, we generated transgenic mice expressing channelrhodopsin fused to yellow fluorescent protein (YFP) in cholinergic neurons (choline acetyltransferase (ChAT)-Cre::ChR2-YFP) with the Cre-LoxP technique. In addition, we used an adeno-associated virus carrying the Cre recombinase gene to delete the floxed Chat gene in the DMH. Physiological studies in response to optogenetic stimulation of DMH cholinergic neurons were combined with gene expression and immunocytochemical analyses. RESULTS: A subset of DMH neurons are ChAT-immunopositive neurons. The activity of these neurons is elevated by warm ambient temperature. A phenotype-specific neuronal tracing shows that DMH cholinergic neurons directly project to serotonergic neurons in the Rpa. Optical stimulation of DMH cholinergic neurons decreases BAT activity, which is associated with reduced body core temperature. Furthermore, elevated DMH cholinergic neuron activity decreases the expression of BAT uncoupling protein 1 (Ucp1) and peroxisome proliferator-activated receptor γ coactivator 1 α (Pgc1α) mRNAs, markers of BAT activity. Injection of M2-selective muscarinic receptor antagonists into the 4th ventricle abolishes the effect of optical stimulation. Single cell qRT-PCR analysis of retrogradely identified BAT-projecting neurons in the Rpa shows that all M2 receptor-expressing neurons contain tryptophan hydroxylase 2. In animals lacking the Chat gene in the DMH, exposure to warm temperature reduces neither BAT Ucp1 nor Pgc1α mRNA expression. CONCLUSION: DMH cholinergic neurons directly send efferent signals to sympathetic premotor neurons in the Rpa. Elevated cholinergic input to this area reduces BAT activity through activation of M2 mAChRs on serotonergic neurons. Therefore, the direct DMH(ACh)-Rpa(5-HT) pathway may mediate physiological heat-defense responses to elevated environmental temperature.We thank Althea Cavanaugh and Licheng Wu for technical supports. This work was
supported by NIDDK (RO1DK092246) to Y.-H.J. and New York obesity nutrition
research center to J.H.J.This is the final published version. It first appeared at http://www.sciencedirect.com/science/article/pii/S2212877815000617
Assessment of Soil Washing for Simultaneous Removal of Heavy Metals and Low-Level Petroleum Hydrocarbons Using Various Washing Solutions
Bench-scale soil washing experiments were conducted for simultaneous removal of heavy metals (Pb, Cu, Zn) and low-level petroleum hydrocarbon contaminants from soils. Various washing solutions including hydrochloric acid (HCl), nitric acid (HNO3), sulfuric acid (H2SO4), tartaric acid (C4H6O6) and ethylenediaminetetraacetic acid (C10H16N2O8, EDTA) were used. The concentration of the washing solutions ranged from 0.1 to 3M with a liquid-to-solid ratio of 10. The soil washing results showed that hydrochloric acid (HCl) was the best washing solution at 3M for heavy metal removal. Other washing solutions also showed a significant removal of heavy metals, except for sulfuric acid (H2SO4). Sulfuric acid (H2SO4) exhibited the worst performance among all washing solutions used with respect to Pb removal. 1M HCl and HNO3were sufficient for effective Pb and Cu removal, and all of the tested washing solutions at a concentration of 0.1M produced results compliant with the Korean warning standard for Zn removal. In the case of total petroleum hydrocarbons (TPH), tartaric acid (C4H6O6) produced the highest removals at all concentration levels compared with other washing solutions. More specifically, TPH removal efficiencies exceeded 33 and 82 % at the lowest (0.1M) and highest (3M) tartaric acid (TA) concentrations, respectively. Overall, TA could be a viable washing solution for the removal of both heavy metals (Pb, Cu, Zn) and TPH from contaminated soils
Outcomes of Revision Surgery Following Instrumented Posterolateral Fusion in Degenerative Lumbar Spinal Stenosis: A Comparative Analysis between Pseudarthrosis and Adjacent Segment Disease
Study DesignRetrospective study.PurposeWe examined the clinical and radiological outcomes of patients who received revision surgery for pseudarthrosis or adjacent segment disease (ASD) following decompression and instrumented posterolateral fusion (PLF).Overview of LiteratureAt present, information regarding the outcomes of revision surgery for complications such as pseudarthrosis and ASD following instrumented PLF is limited.MethodsThis study examined 60 patients who received PLF for degenerative lumbar spinal stenosis and subsequently developed pseudarthrosis or ASD leading to revision surgery. Subjects were divided into a group of 21 patients who received revision surgery for pseudarthrosis (Group P) and a group of 39 patients who received revision surgery for ASD (Group A). Clinical outcomes were evaluated using the visual analogue scales for back pain (VAS-BP) and leg pain (VAS-LP), the Korean Oswestry disability index (K-ODI), and each patient's subjective satisfaction. Radiological outcomes were evaluated from the extent of bone union, and complications in the two groups were compared.ResultsVAS-LP at final follow-up was not statistically different between the two groups (p =0.353), although VAS-BP and K-ODI at final follow-up were significantly worse in Group P than in Group A (all p <0.05), and only 52% of the patients in Group P felt that their overall well-being had improved following revision surgery. Fusion rates after the first revision surgery were 71% (15/21) in Group P and 95% (37/39) in Group A (p =0.018). The rate of reoperation was significantly higher in Group P (29%) than in Group A (5%) (p =0.021) due to complications.ConclusionsClinical and radiological outcomes were worse in patients who had received revision surgery for pseudarthrosis than in those who had revision surgery for ASD. Elderly patients should be carefully advised of the risks and benefits before planning revision surgery for pseudarthrosis
Chromosome-level genome assembly of Patagonian moray cod (Muraenolepis orangiensis) and immune deficiency of major histocompatibility complex (MHC) class II
The Patagonian moray cod, Muraenolepis orangiensis, belongs to the family Muraenolepididae and is the sole order of Gadiformes that inhabits the temperate and cold waters of the southern hemisphere. One of the features of the Gadiformes order is that they have a remarkably unique immune gene repertoire that influences innate and adaptive immunity, and they lack major histocompatibility complex (MHC) class II, invariant chains (CD74), and CD4 genes. In this study, a high-quality chromosome-level genome assembly was constructed, resulting in a final assembled genome of 893.75 Mb, with an N50 scaffold length of 30.07 Mb and the longest scaffold being 39.77 Mb. Twenty-five high-quality pseudochromosomes were assembled, and the complete BUSCO rate was 93.4%. A total of 34,553 genes were structurally annotated, and 27,691 genes were functionally annotated. Among the 10 primary genes involved in MHC class II, only two ERAP1 genes and one AIRE gene were identified through the genome study. Although no specific reason for the MHC class II deficiency has been identified, it has been shown that the toll-like receptors (TLRs), which are significant to the innate immune response, are significantly expanded in M. orangiensis. A total of 44 TLRs have been identified, with 32 TLR13 genes distributed evenly on six different pseudochromosomes. This study is the first to reveal the whole genome of a Muraenolepididae family and provides valuable insights into the potential rationale for the MHC class II deficiency in a Gadiformes fish species
Recommended from our members
Highly-Sensitive Textile Pressure Sensors Enabled by Suspended-Type All Carbon Nanotube Fiber Transistor Architecture.
Among various wearable health-monitoring electronics, electronic textiles (e-textiles) have been considered as an appropriate alternative for a convenient self-diagnosis approach. However, for the realization of the wearable e-textiles capable of detecting subtle human physiological signals, the low-sensing performances still remain as a challenge. In this study, a fiber transistor-type ultra-sensitive pressure sensor (FTPS) with a new architecture that is thread-like suspended dry-spun carbon nanotube (CNT) fiber source (S)/drain (D) electrodes is proposed as the first proof of concept for the detection of very low-pressure stimuli. As a result, the pressure sensor shows an ultra-high sensitivity of ~3050 Pa-1 and a response/recovery time of 258/114 ms in the very low-pressure range of <300 Pa as the fiber transistor was operated in the linear region (VDS = -0.1 V). Also, it was observed that the pressure-sensing characteristics are highly dependent on the contact pressure between the top CNT fiber S/D electrodes and the single-walled carbon nanotubes (SWCNTs) channel layer due to the air-gap made by the suspended S/D electrode fibers on the channel layers of fiber transistors. Furthermore, due to their remarkable sensitivity in the low-pressure range, an acoustic wave that has a very tiny pressure could be detected using the FTPS
Forward-looking ultrasound wearable scanner system for estimation of urinary bladder volume
Accurate measurement of bladder volume is an important tool for evaluating bladder function. In this study, we propose a wearable bladder scanner system that can continuously measure bladder volume in daily life for urinary patients who need urodynamic studies. The system consisted of a 2-D array, which included integrated forward-looking piezoelectric transducers with thin substrates. This study aims to estimate the volume of the bladder using a small number of piezoelectric transducers. A least-squares method was implemented to optimize an ellipsoid in a quadratic surface equation for bladder volume estimation. Ex-vivo experiments of a pig bladder were conducted to validate the proposed system. This work presents the potential of the approach for wearable bladder monitoring, which has similar measurement accuracy compared to the commercial bladder imaging system. The wearable bladder scanner can be improved further as electronic voiding diaries by adding a few more features to the current function. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.1
- …