26,123 research outputs found
Entangled coherent states versus entangled photon pairs for practical quantum information processing
We compare effects of decoherence and detection inefficiency on entangled
coherent states (ECSs) and entangled photon pairs (EPPs), both of which are
known to be particularly useful for quantum information processing (QIP). When
decoherence effects caused by photon losses are heavy, the ECSs outperform the
EPPs as quantum channels for teleportation both in fidelities and in success
probabilities. On the other hand, when inefficient detectors are used, the
teleportation scheme using the ECSs suffers undetected errors that result in
the degradation of fidelity, while this is not the case for the teleportation
scheme using the EPPs. Our study reveals the merits and demerits of the two
types of entangled states in realizing practical QIP under realistic
conditions.Comment: 9 pages, 6 figures, substantially revised version, to be published in
Phys. Rev.
Faithful test of non-local realism with entangled coherent states
We investigate the violation of Leggett's inequality for non-local realism
using entangled coherent states and various types of local measurements. We
prove mathematically the relation between the violation of the
Clauser-Horne-Shimony-Holt form of Bell's inequality and Leggett's one when
tested by the same resources. For Leggett inequalities, we generalize the
non-local realistic bound to systems in Hilbert spaces larger than
bidimensional ones and introduce an optimization technique that allows to
achieve larger degrees of violation by adjusting the local measurement
settings. Our work describes the steps that should be performed to produce a
self-consistent generalization of Leggett's original arguments to
continuous-variable states.Comment: 8 pages, 6 figures, to be published in Phys. Rev.
Effects of squeezing on quantum nonlocality of superpositions of coherent states
We analyze effects of squeezing upon superpositions of coherent states (SCSs)
and entangled coherent states (ECSs) for Bell-inequality tests. We find that
external squeezing can always increase the degrees of Bell violations, if the
squeezing direction is properly chosen, for the case of photon parity
measurements. On the other hand, when photon on/off measurements are used, the
squeezing operation can enhance the degree of Bell violations only for moderate
values of amplitudes and squeezing. We point out that a significant improvement
is required over currently available squeezed SCSs in order to directly
demonstrate a Bell-inequality violation in a real experiment.Comment: 7 pages, 4 figures, accepted for publication in Phys. Rev.
Violation of Bell's inequality using classical measurements and non-linear local operations
We find that Bell's inequality can be significantly violated (up to
Tsirelson's bound) with two-mode entangled coherent states using only homodyne
measurements. This requires Kerr nonlinear interactions for local operations on
the entangled coherent states. Our example is a demonstration of
Bell-inequality violations using classical measurements. We conclude that
entangled coherent states with coherent amplitudes as small as 0.842 are
sufficient to produce such violations.Comment: 6 pages, 5 figures, to be published in Phys. Rev.
Testing non-local realism with entangled coherent states
We investigate the violation of non-local realism using entangled coherent
states (ECS) under nonlinear operations and homodyne measurements. We address
recently proposed Leggett-type inequalities, including a class of optimized
incompatibility ones and thoroughly assess the effects of detection
inefficiency.Comment: 7 pages, 6 figures, RevTeX4, accepted for publication in Phys. Rev.
Production of superpositions of coherent states in traveling optical fields with inefficient photon detection
We develop an all-optical scheme to generate superpositions of
macroscopically distinguishable coherent states in traveling optical fields. It
non-deterministically distills coherent state superpositions (CSSs) with large
amplitudes out of CSSs with small amplitudes using inefficient photon
detection. The small CSSs required to produce CSSs with larger amplitudes are
extremely well approximated by squeezed single photons. We discuss some
remarkable features of this scheme: it effectively purifies mixed initial
states emitted from inefficient single photon sources and boosts negativity of
Wigner functions of quantum states.Comment: 13 pages, 9 figures, to be published in Phys. Rev.
Friction force microscopy : a simple technique for identifying graphene on rough substrates and mapping the orientation of graphene grains on copper
At a single atom thick, it is challenging to distinguish graphene from its substrate using conventional techniques. In this paper we show that friction force microscopy (FFM) is a simple and quick technique for identifying graphene on a range of samples, from growth substrates to rough insulators. We show that FFM is particularly effective for characterizing graphene grown on copper where it can correlate the graphene growth to the three-dimensional surface topography. Atomic lattice stick–slip friction is readily resolved and enables the crystallographic orientation of the graphene to be mapped nondestructively, reproducibly and at high resolution. We expect FFM to be similarly effective for studying graphene growth on other metal/locally crystalline substrates, including SiC, and for studying growth of other two-dimensional materials such as molybdenum disulfide and hexagonal boron nitride
- …