624 research outputs found
An Active and Soft Hydrogel Actuator to Stimulate Live Cell Clusters by Self-folding
The hydrogels are widely used in various applications, and their successful uses depend on controlling the mechanical properties. In this study, we present an advanced strategy to develop hydrogel actuator designed to stimulate live cell clusters by self-folding. The hydrogel actuator consisting of two layers with different expansion ratios were fabricated to have various curvatures in self-folding. The expansion ratio of the hydrogel tuned with the molecular weight and concentration of gel-forming polymers, and temperature-sensitive molecules in a controlled manner. As a result, the hydrogel actuator could stimulate live cell clusters by compression and tension repeatedly, in response to temperature. The cell clusters were compressed in the 0.7-fold decreases of the radius of curvature with 1.0 mm in room temperature, as compared to that of 1.4 mm in 37 degrees C. Interestingly, the vascular endothelial growth factor (VEGF) and insulin-like growth factor-binding protein-2 (IGFBP-2) in MCF-7 tumor cells exposed by mechanical stimulation was expressed more than in those without stimulation. Overall, this new strategy to prepare the active and soft hydrogel actuator would be actively used in tissue engineering, drug delivery, and micro-scale actuators
Linking Authentic Leadership With Employee Initiative Behavior and Task Performance: The Mediating Role of Emotional Sharing and Communication Satisfaction
Our study aims to explore the process through which authentic leadership leads to employees’ initiative behavior and task performance. In particular, we focused on the mediating roles of emotional sharing and communication satisfaction. Based on data collected from 242 employee-supervisor dyads, we found that authentic leadership was significantly related to emotional sharing, which was sequentially significantly related to communication satisfaction. Communication satisfaction was significantly associated with initiative behavior and task performance. In addition, emotional sharing and communication satisfaction played significant mediating roles not only in the relationship between authentic leadership and initiative behavior, but also in the relationship between authentic leadership and task performance. The limitations and implications for future research and practice are discussed
A Novel Pinkish-White Flower Color Variant Is Caused by a New Allele of Flower Color Gene W1 in Wild Soybean (Glycine soja)
The enzyme flavonoid 3',5'-hydroxylase (F3'5'H) plays an important role in producing anthocyanin pigments in soybean. Loss of function of the W1 locus encoding F3'5'H always produces white flowers. However, few color variations have been reported in wild soybean. In the present study, we isolated a new color variant of wild soybean accession (IT261811) with pinkish-white flowers. We found that the flower's pinkish-white color is caused by w1-s3, a single recessive allele of W1. The SNP detected in the mutant caused amino acid substitution (A(304)S) in a highly conserved SRS4 domain of F3'5'H proteins. On the basis of the results of the protein variation effect analyzer (PROVEAN) tool, we suggest that this mutation may lead to hypofunctional F3'5'H activity rather than non-functional activity, which thereby results in its pinkish-white color
Effects of education on low-phosphate diet and phosphate binder intake to control serum phosphate among maintenance hemodialysis patients: A randomized controlled trial.
Background:For phosphate control, patient education is essential due to the limited clearance of phosphate by dialysis. However, well-designed randomized controlled trials about dietary and phosphate binder education have been scarce. Methods:We enrolled maintenance hemodialysis patients and randomized them into an education group (n = 48) or a control group (n = 22). We assessed the patients' drug compliance and their knowledge about the phosphate binder using a questionnaire. Results:The primary goal was to increase the number of patients who reached a calcium-phosphorus product of lower than 55. In the education group, 36 (75.0%) patients achieved the primary goal, as compared with 16 (72.7%) in the control group (P = 0.430). The education increased the proportion of patients who properly took the phosphate binder (22.9% vs. 3.5%, P = 0.087), but not to statistical significance. Education did not affect the amount of dietary phosphate intake per body weight (education vs. control: -1.18 ± 3.54 vs. -0.88 ± 2.04 mg/kg, P = 0.851). However, the dietary phosphate-to-protein ratio tended to be lower in the education group (-0.64 ± 2.04 vs. 0.65 ± 3.55, P = 0.193). The education on phosphate restriction affected neither the Patient-Generated Subjective Global Assessment score (0.17 ± 4.58 vs. -0.86 ± 3.86, P = 0.363) nor the level of dietary protein intake (-0.03 ± 0.33 vs. -0.09 ± 0.18, P = 0.569). Conclusion:Education did not affect the calcium-phosphate product. Education on the proper timing of phosphate binder intake and the dietary phosphate-to-protein ratio showed marginal efficacy
Involvement of Heme Oxygenase-1 Induction in the Cytoprotective and Immunomodulatory Activities of Viola patrinii in Murine Hippocampal and Microglia Cells
A number of diseases that lead to injury of the central nervous system are caused by oxidative stress and inflammation in the brain. In this study, NNMBS275, consisting of the ethanol extract of Viola patrinii, showed potent antioxidative and anti-inflammatory activity in murine hippocampal HT22 cells and BV2 microglia. NNMBS275 increased cellular resistance to oxidative injury caused by glutamate-induced neurotoxicity and reactive oxygen species generation in HT22 cells. In addition, the anti-inflammatory effects of NNMBS275 were demonstrated by the suppression of proinflammatory mediators, including proinflammatory enzymes (inducible nitric oxide synthase and cyclooxygenase-2) and cytokines (tumor necrosis factor-α and interleukin-1β). Furthermore, we found that the neuroprotective and anti-inflammatory effects of NNMBS275 were linked to the upregulation of nuclear transcription factor-E2-related factor 2-dependent expression of heme oxygenase-1 in HT22 and BV2 cells. These results suggest that NNMBS275 possesses therapeutic potential against neurodegenerative diseases that are induced by oxidative stress and neuroinflammation
Absence of pain in subjects with advanced radiographic knee osteoarthritis
Background
To investigate the frequency of pain among subjects with advanced radiographic knee osteoarthritis (OA) defined as Kellgren–Lawrence (KL) grade 4 and clinical features associated with pain.
Methods
Subjects from the Hallym Aging Study (HAS), the Korean National Health and Nutrition Examination Survey (KNHANES), and the Osteoarthritis Initiative (OAI) were included. Participants were asked knee-specific questions regarding the presence of knee pain. Clinical characteristics associated with the presence of pain were evaluated with multivariable logistic regression analysis.
Results
The study population consisted of 504, 10,152 and 4796 subjects from HAS, KNHANES, and OAI, respectively. KL grade 4 OA was identified in 9.3, 7.6, and 11.5% of subjects, while pain was absent in 23.5, 31.2, and 5.9% of subjects in KL grade 4 knee OA, respectively. After multivariable analysis, female gender showed a significant association with pain in the KNHANES group, while in the OAI group, younger age did. Advanced knee OA patients without pain did not differ from non-OA subjects in most items of SF-12 in both Korean and OAI subjects. Total WOMAC score was not significantly different between non-OA and advanced knee OA subjects without pain in the OAI.
Conclusions
Our study showed that a considerable number of subjects with KL grade 4 OA did not report pain. In patients whose pain arises from causes other than structural damage of the joint, therapeutic decision based on knee X-ray would lead to suboptimal result. In addition, treatment options focusing solely on cartilage engineering, should be viewed with caution.This work was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HI16C0287), a grant of the Basic Science Research Program through the National Research Foundation (NRF) of Korea funded by the Ministry of Education (2017R1A2B2001881), and Hallym University research fun
Low-Power Complementary Inverter Based on Graphene/Carbon-Nanotube and Graphene/MoS<sub>2</sub> Barristors
The recent report of a p-type graphene(Gr)/carbon-nanotube(CNT) barristor facilitates the application of graphene barristors in the fabrication of complementary logic devices. Here, a complementary inverter is presented that combines a p-type Gr/CNT barristor with a n-type Gr/MoS2 barristor, and its characteristics are reported. A sub-nW (~0.2 nW) low-power inverter is demonstrated with a moderate gain of 2.5 at an equivalent oxide thickness (EOT) of ~15 nm. Compared to inverters based on field-effect transistors, the sub-nW power consumption was achieved at a much larger EOT, which was attributed to the excellent switching characteristics of Gr barristors
- …