1,584 research outputs found

    Complete gate control of supercurrent in graphene p-n junctions

    Get PDF
    In a conventional Josephson junction of graphene, the supercurrent is not turned off even at the charge neutrality point, impeding further development of superconducting quantum information devices based on graphene. Here we fabricate bipolar Josephson junctions of graphene, in which a p-n potential barrier is formed in graphene with two closely spaced superconducting contacts, and realize supercurrent ON/OFF states using electrostatic gating only. The bipolar Josephson junctions of graphene also show fully gate-driven macroscopic quantum tunnelling behaviour of Josephson phase particles in a potential well, where the confinement energy is gate tuneable. We suggest that the supercurrent OFF state is mainly caused by a supercurrent dephasing mechanism due to a random pseudomagnetic field generated by ripples in graphene, in sharp contrast to other nanohybrid Josephson junctions. Our study may pave the way for the development of new gate-tuneable superconducting quantum information devices.open114344sciescopu

    A novel methodology for systematic study on molecular release from microscale reservoirs

    Get PDF
    We have developed a novel method to systematically investigate molecular release. A series of processes including buckling of thin polymer films, deposition of solute molecules, and transfer to other substrates enabled the fabrication of uniform and submicron-sized tunnel-like molecular reservoirs. From the release profiles, diffusivity and solubility of the solute molecules in the polymeric barriers were calculated. As a model study, we investigated the release of rhodamine B and FITC-labeled dextran polymer representing small molecules and large molecules. The degree of hydration of the polymer barrier was controlled by changing the chain end group of polystyrene (PS) by tert-butyl (PS-t-Bu) and nitrilotriacetic acid (PS-NTA). The NTA-terminated PS thin films showed 13% water uptake regardless of the film thickness while the bare PS and PS-t-Bu barriers exhibited 4% and 6% uptake. This difference in hydration affected release behavior of the molecules. The release of small molecules was dependent on the barrier polymers, while the release of large molecules was completely blocked due to the restricted chain movement of the barrier polymers. Surface treatment by CF4 plasma on the PS-NTA barriers considerably retarded the release of small molecules and blocked the release of large molecules. The release behavior could be well explained by the diffusivity and solubility calculated from the release profile.open1133sciescopu

    Optimization of an Electron Transport Layer to Enhance the Power Conversion Efficiency of Flexible Inverted Organic Solar Cells

    Get PDF
    The photovoltaic (PV) performance of flexible inverted organic solar cells (IOSCs) with an active layer consisting of a blend of poly(3-hexylthiophene) and [6, 6]-phenyl C61-butlyric acid methyl ester was investigated by varying the thicknesses of ZnO seed layers and introducing ZnO nanorods (NRs). A ZnO seed layer or ZnO NRs grown on the seed layer were used as an electron transport layer and pathway to optimize PV performance. ZnO seed layers were deposited using spin coating at 3,000 rpm for 30 s onto indium tin oxide (ITO)-coated polyethersulphone (PES) substrates. The ZnO NRs were grown using an aqueous solution method at a low temperature (90°C). The optimized device with ZnO NRs exhibited a threefold increase in PV performance compared with that of a device consisting of a ZnO seed layer without ZnO NRs. Flexible IOSCs fabricated using ZnO NRs with improved PV performance may pave the way for the development of PV devices with larger interface areas for effective exciton dissociation and continuous carrier transport paths

    Mathematically Gifted Adolescents Have Deficiencies in Social Valuation and Mentalization

    Get PDF
    Many mathematically gifted adolescents are characterized as being indolent, underachieving and unsuccessful despite their high cognitive ability. This is often due to difficulties with social and emotional development. However, research on social and emotional interactions in gifted adolescents has been limited. The purpose of this study was to observe differences in complex social strategic behaviors between gifted and average adolescents of the same age using the repeated Ultimatum Game. Twenty-two gifted adolescents and 24 average adolescents participated in the Ultimatum Game. Two adolescents participate in the game, one as a proposer and the other as a responder. Because of its simplicity, the Ultimatum Game is an apt tool for investigating complex human emotional and cognitive decision-making in an empirical setting. We observed strategic but socially impaired offers from gifted proposers and lower acceptance rates from gifted responders, resulting in lower total earnings in the Ultimatum Game. Thus, our results indicate that mathematically gifted adolescents have deficiencies in social valuation and mentalization

    A Role for ATF2 in Regulating MITF and Melanoma Development

    Get PDF
    The transcription factor ATF2 has been shown to attenuate melanoma susceptibility to apoptosis and to promote its ability to form tumors in xenograft models. To directly assess ATF2's role in melanoma development, we crossed a mouse melanoma model (Nras(Q61K)::Ink4a⁻/⁻) with mice expressing a transcriptionally inactive form of ATF2 in melanocytes. In contrast to 7/21 of the Nras(Q61K)::Ink4a⁻/⁻ mice, only 1/21 mice expressing mutant ATF2 in melanocytes developed melanoma. Gene expression profiling identified higher MITF expression in primary melanocytes expressing transcriptionally inactive ATF2. MITF downregulation by ATF2 was confirmed in the skin of Atf2⁻/⁻ mice, in primary human melanocytes, and in 50% of human melanoma cell lines. Inhibition of MITF transcription by MITF was shown to be mediated by ATF2-JunB-dependent suppression of SOX10 transcription. Remarkably, oncogenic BRAF (V600E)-dependent focus formation of melanocytes on soft agar was inhibited by ATF2 knockdown and partially rescued upon shMITF co-expression. On melanoma tissue microarrays, a high nuclear ATF2 to MITF ratio in primary specimens was associated with metastatic disease and poor prognosis. Our findings establish the importance of transcriptionally active ATF2 in melanoma development through fine-tuning of MITF expression

    Ramond-Ramond Cohomology and O(D,D) T-duality

    Full text link
    In the name of supersymmetric double field theory, superstring effective actions can be reformulated into simple forms. They feature a pair of vielbeins corresponding to the same spacetime metric, and hence enjoy double local Lorentz symmetries. In a manifestly covariant manner --with regard to O(D,D) T-duality, diffeomorphism, B-field gauge symmetry and the pair of local Lorentz symmetries-- we incorporate R-R potentials into double field theory. We take them as a single object which is in a bi-fundamental spinorial representation of the double Lorentz groups. We identify cohomological structure relevant to the field strength. A priori, the R-R sector as well as all the fermions are O(D,D) singlet. Yet, gauge fixing the two vielbeins equal to each other modifies the O(D,D) transformation rule to call for a compensating local Lorentz rotation, such that the R-R potential may turn into an O(D,D) spinor and T-duality can flip the chirality exchanging type IIA and IIB supergravities.Comment: 1+37 pages, no figure; Structure reorganized, References added, To appear in JHEP. cf. Gong Show of Strings 2012 (http://wwwth.mpp.mpg.de/members/strings/strings2012/strings_files/program/Talks/Thursday/Gongshow/Lee.pdf

    Interaction of Water-Soluble CdTe Quantum Dots with Bovine Serum Albumin

    Get PDF
    Semiconductor nanoparticles (quantum dots) are promising fluorescent markers, but it is very little known about interaction of quantum dots with biological molecules. In this study, interaction of CdTe quantum dots coated with thioglycolic acid (TGA) with bovine serum albumin was investigated. Steady state spectroscopy, atomic force microscopy, electron microscopy and dynamic light scattering methods were used. It was explored how bovine serum albumin affects stability and spectral properties of quantum dots in aqueous media. CdTe–TGA quantum dots in aqueous solution appeared to be not stable and precipitated. Interaction with bovine serum albumin significantly enhanced stability and photoluminescence quantum yield of quantum dots and prevented quantum dots from aggregating

    Prognostic significance of a systemic inflammatory response in patients receiving first-line palliative chemotherapy for recurred or metastatic gastric cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is increasing evidence that the presence of an ongoing systemic inflammatory response is associated with poor prognosis in patients with advanced cancers. We evaluated the relationships between clinical status, laboratory factors and progression free survival (PFS), and overall survival (OS) in patients with recurrent or metastatic gastric cancer receiving first-line palliative chemotherapy.</p> <p>Methods</p> <p>We reviewed 402 patients with advanced gastric adenocarcinoma who received first-line palliative chemotherapy from June 2004 and December 2009. Various chemotherapy regimens were used. Eastern Cooperative Oncology Group performance status (ECOG PS), C-reactive protein (CRP), albumin, Glasgow prognostic score (GPS), and clinical factors were recorded immediately prior to first-line chemotherapy. Patients with both an elevated CRP (>1.0 mg/dL) and hypoalbuminemia (<3.5 mg/dL) were assigned a GPS of 2. Patients in whom only one of these biochemical abnormalities was present were assigned a GPS of 1, and patients with a normal CRP and albumin were assigned a score of 0. To evaluate the factors that affected PFS and OS, univariate and multivariate analyses were performed.</p> <p>Results</p> <p>According to multivariate analysis, the factors independently associated with PFS were ECOG PS (HR 1.37, 95% CI 1.02-1.84, <it>P </it>= 0.035), bone metastasis (HR 1.74, 95% CI 1.14-2.65, <it>P </it>= 0.009), and CRP elevation (HR 1.64, 95% CI 1.28-2.09, <it>P </it>= 0.001). The factors independently associated with OS were ECOG PS (HR 1.33, 95% CI 1.01-1.76, <it>P </it>= 0.037), bone metastasis (HR 1.61, 95% CI 1.08-2.39, <it>P </it>= 0.017), and GPS ≥ 1 (HR 1.76, 95% CI 1.41-2.19, <it>P </it>= 0.001).</p> <p>Conclusions</p> <p>The results of this study showed that the presence of a systemic inflammatory response as evidenced by the CRP, GPS was significantly associated with shorter PFS and OS in patients with recurrent or metastatic gastric cancer receiving first-line palliative chemotherapy. Bone metastasis and GPS were very useful indicator for survival in patients with recurrent or metastatic gastric cancer receiving palliative chemotherapy.</p

    Enhanced UV photosensitivity from rapid thermal annealed vertically aligned ZnO nanowires

    Get PDF
    We report on the major improvement in UV photosensitivity and faster photoresponse from vertically aligned ZnO nanowires (NWs) by means of rapid thermal annealing (RTA). The ZnO NWs were grown by vapor-liquid-solid method and subsequently RTA treated at 700°C and 800°C for 120 s. The UV photosensitivity (photo-to-dark current ratio) is 4.5 × 103 for the as-grown NWs and after RTA treatment it is enhanced by a factor of five. The photocurrent (PC) spectra of the as-grown and RTA-treated NWs show a strong peak in the UV region and two other relatively weak peaks in the visible region. The photoresponse measurement shows a bi-exponential growth and bi-exponential decay of the PC from as-grown as well as RTA-treated ZnO NWs. The growth and decay time constants are reduced after the RTA treatment indicating a faster photoresponse. The dark current-voltage characteristics clearly show the presence of surface defects-related trap centers on the as-grown ZnO NWs and after RTA treatment it is significantly reduced. The RTA processing diminishes the surface defect-related trap centers and modifies the surface of the ZnO NWs, resulting in enhanced PC and faster photoresponse. These results demonstrated the effectiveness of RTA processing for achieving improved photosensitivity of ZnO NWs
    corecore